Recent content by nkinar
-
N
Graduate Calculating 1D spectrum from 2D spectrum
Thanks, I think that you are right about the notation and the substitution. -
N
Graduate Determining parameters of a function from its outputs
Okay, thanks Robert; I think that I understand now. Essentially what is required are four unique functions that describe some sort of physical relationship between the required quantities. The key here is that the functions must be different. Once again, thank you.- nkinar
- Post #18
- Forum: General Math
-
N
Graduate Determining parameters of a function from its outputs
Ah, okay; what about the following. Suppose that I change the radius r_1,r_2,r_3,r_4, and take samples at four separate distances. Would this qualify as "different enough" to have a system of four non-linear equations? \Delta T(q,k,r,\alpha)= \frac{q}{4 \pi k} E_i \left(...- nkinar
- Post #16
- Forum: General Math
-
N
Graduate Determining parameters of a function from its outputs
Okay, thanks for pointing this out, RobertT. I suppose that I have to try something else, as per post #11 or #12 above.- nkinar
- Post #14
- Forum: General Math
-
N
Graduate Determining parameters of a function from its outputs
Similar problems for heat conduction are described in James V. Beck and Kenneth J. Arnold's 1977 book, "Parameter Estimation in Engineering and Science." On pg. 434, the authors write, "Without prior information the minimum number of measurements n needed to estimate p parameters is n = p. In...- nkinar
- Post #12
- Forum: General Math
-
N
Graduate Determining parameters of a function from its outputs
hotvette, thank you very much for your response. Looking back at the original equation, I would like to determine {a,b,c,d} from a dataset. T(a,b,c,d)= \frac{a}{4 \pi c} E_i \left( \frac{b^2}{ 4 \frac{c}{de}t } \right) The idea that I've been toiling with for quite a...- nkinar
- Post #11
- Forum: General Math
-
N
Graduate Determining parameters of a function from its outputs
Thanks, deluks917. I still need to explore the mathematics of this problem further, but I do agree that a root-finding algorithm such as Newton's method may be useful.- nkinar
- Post #9
- Forum: General Math
-
N
Graduate Determining parameters of a function from its outputs
Ah, yes - that is a good example of a function where it doesn't work; thanks for posting this, LCKurtz. But I think that if the four outputs g_1,g_2,g_3,g_4 are different and unique, then perhaps optimization could be used. Perhaps uniqueness of the outputs implies that the inputs can be found.- nkinar
- Post #7
- Forum: General Math
-
N
Graduate Determining parameters of a function from its outputs
Yeah, I was hoping for something like that as well! ;-) The variable c in the prefactor is also one of the variables. I agree that using an optimization technique seems to be the way to deal with this expression. I'll be able to explore this idea further in the following weeks as I start to...- nkinar
- Post #5
- Forum: General Math
-
N
Graduate Determining parameters of a function from its outputs
Sure, CompuChip; thank you very much for your response. Here's an example function: T(a,b,c,d)= \frac{a}{4 \pi c} E_i \left( \frac{b^2}{ 4 \frac{c}{de}t } \right) In the above expression, a,b,c,d are the independent variables, and e,t are known constants. The E_i function is the...- nkinar
- Post #3
- Forum: General Math
-
N
Graduate Determining parameters of a function from its outputs
Suppose that I have a function f(a,b,c,d) = g, where {a,b,c,d} are four independent variables and g is the dependent variable. Now let's say that I evaluate the function four times, each time using different inputs, and the function produces four different outputs: f(a_1,b_1,c_1,d_1) = g_1...- nkinar
- Thread
- Function Parameters
- Replies: 18
- Forum: General Math
-
N
Graduate Splitting wave equation into x-component and y-component
I've started to numerically discretize the equations that I've listed in a previous post, but I've run into a difficulty. At each timestep, I need to solve for {p_x,p_y,p_t} , but at the same time I don't know {k_x,k_y, k_t} . Is there some sort of physical basis for calculating...- nkinar
- Post #17
- Forum: Classical Physics
-
N
Graduate Splitting wave equation into x-component and y-component
Hello arildno, Many thanks for your reply! Well, from what I understand, the separation of variables approach simply produces three equations. These equations are then subjected to the application of the Convolutional Perfectly Matched Layer (CPML). So I think that the separation of...- nkinar
- Post #16
- Forum: Classical Physics
-
N
Graduate Splitting wave equation into x-component and y-component
Furthermore, for initial conditions, if p=0, then I think that it might also be possible to assume that k_x = 0, k_y=0, and k_t = 0.- nkinar
- Post #14
- Forum: Classical Physics
-
N
Graduate Splitting wave equation into x-component and y-component
Hello arildno, Looking at this again, I think that you were completely correct with your initial suggestion and I didn't really understand what you were saying. My apologies. The substitution p = p_x p_y p_t is simply a substitution which is mathematically reasonable. I believe that...- nkinar
- Post #13
- Forum: Classical Physics