Recent content by oliveriandrea

  1. O

    Symmetrization of a tensor in spherical coordinate

    Hello, i don't know if my question is well posed, if i have a symmetric tensor Sij = (∂ixj + ∂jxi) / 2 with xi cartesian coordinates, how can i transform it in a spherical coordinates system (ρ,θ,\varphi)? (I need it for the calculus of shear stress tensor in spherical coordinate in fluid...
  2. O

    Introduction to Liouvillian Operator inStatistical Mechanics

    OPS... i see now that exist an appropriate section ( Math & Science Learning Materials ) for this type of questions. Please moderator, can you move this thread in it?
  3. O

    Introduction to Liouvillian Operator inStatistical Mechanics

    Hello, who can suggest me a book, or a PDF where i can find an introduction to Liouvillian operator in statistical mechanics? I understand that it's correlated to time evolution of density of an Hamiltonian system but i don't know anything else thank you sorry for my wrong english.. :(
  4. O

    Commutator between covariant derivative, field strength

    Hello, i try to prove that ∂μFμ\nu + ig[Aμ, Fμ\nu] = [Dμ,Fμ\nu] with the Dμ = ∂μ + igAμ but i have a problem with the term Fμ\nu∂μ ... i try to demonstrate that is nil, but i don't know if it's right... Fμ\nu∂μ \Psi = \int (∂\nuFμ\nu) (∂μ\Psi) + \int Fμ\nu∂μ∂\nu \Psi = (∂\nuFμ\nu) [\Psi ]∞∞...
  5. O

    Weyl spinor notation co/contravariant and un/dotted

    Ohh! Thank you! :smile: I hate notation problems! Finaly I've understood it!
  6. O

    Weyl spinor notation co/contravariant and un/dotted

    with bar as hermitian conjugate right?
  7. O

    Weyl spinor notation co/contravariant and un/dotted

    Hello, sorry for my english.. I have a problem with weyl's spinors notation. I'm confused, becouse i read more books (like Landau, Srednicki and Peskin) and it's seems to me that all of them use different and incompatible notations.. If i define...
Back
Top