1. Find the minimum point of
I(p, q, r, s)=\int_{\mathbb{R}^2}\,dxdy\,\left[exp(-(x-d)^2-y^2)+exp(-(x+d)^2-y^2)-exp(-(x-p)^2-(y-q)^2)-exp(-(x-r)^2+(y-s)^2)\right]^2
+\int_{\mathbb{R}^2}\,dxdy\,\left[exp(-(x-\delta_x)^2-(y-\delta_y)^2)-exp(-(x-p)^2+(y-q)^2)\right]^2
for given d, \delta_x...