so area for cylinder is, A = 2 pi r ( r + h ).
= 2(3.14)(2.5*10^-4){(2.5*10^-4)+0.1} m^2
= 1.57*10^-4 m^2
= 1.57 cm^2
so C = (1*10^-6 F)(1.57 cm^2)
= 1.57*10^-6 F
and V = -70 mV =...
there are like 6 parts of this problem.
so for part a)
C = Q/V
V = 100 V
C1 = 15*10^-6 F
so Q = C1V = 100 V(15*10^-6 F) = 1.5*10^-3 C
and how do I get the potential difference?
Homework Statement
A real battery is not just an emf. We can model a real 1.5 battery as a 1.5 emf in series with a resistor known as the "internal resistance", as shown in the figure (Intro 1 figure) . A typical battery has 1.0 Ohm internal resistance due to imperfections that limit...
we know C = Q/V
V = 100 V
C1 = 15*10^-6 F
so Q = C1V = 100 V(15*10^-6 F) = 1.5*10^-3 C
C2 and C3 is in series. so 1/C = (1/C2 + 1/C3) = (1/30*10^-6)+(1/30*10^-6) = 66666.67
so C = 1.5*10^-5
would the Q be same after switching to point b? If yes, then we can figure out V using above equation.
Energy stored in a capacitor, U = 1/2(Q^2/C) = 1/2(Q/V) = 1/2 CV^2
If we know any two of Q,C, or V we can figure out the energy.
C is 1 microF per square centimeters. we can get the area using A=(3.14)r^2 and get the C from there.
and the V is given -70 mV.
so we can use V and C to get U.
right?