Okay thank you so much for the help.
I think I found a solution by choosing ##a_n = 2## if ##n## is even and ##a_n = 3## if ##n## is odd, then I end up having ##\tilde{R} = \frac{2}{3} < 1 = R##.
Homework Statement
Let ##\sum^{\infty}_{n=0} a_n(z-a)^n## be a real or complex power series and set ##\alpha =
\limsup\limits_{n\rightarrow\infty} |a_n|^{\frac{1}{n}}##. If ##\alpha = \infty## then the convergence radius ##R=0##, else ##R## is given by ##R = \frac{1}{\alpha}##, where...
Homework Statement
Problem:
a) Find the Fourier transform of the Dirac delta function: δ(x)
b) Transform back to real space, and plot the result, using a varying number of Fourier components (waves).
c) test by integration, that the delta function represented by a Fourier integral integrates...