I have been trying to use, with##~a, \alpha ~\text{and}~ \beta## all real , and ##a## positive, the following
$$\int_{-\infty}^\infty~e^{i[a(p+\alpha)^2+\beta]}\mathrm{d}p=\int_{-\infty}^\infty~\cos[a(p+\alpha)^2+\beta]\mathrm{d}p+i\int_{-\infty}^\infty~\sin[a(p+\alpha)^2+\beta]\mathrm{d}p$$
$$...