Decomposing a Certain Exponential Integral

Click For Summary
SUMMARY

The forum discussion focuses on the evaluation of the integral $$\int_{-\infty}^\infty e^{i[a(p+\alpha)^2+\beta]}\mathrm{d}p$$ using Euler's formula. The user derives the results for the cosine and sine components, yielding $$I_{cos}=\sqrt \frac{ \pi} {2a} (\cos\beta - \sin\beta)$$ and $$I_{sin}=\sqrt \frac{ \pi} {2a} (\cos\beta + \sin\beta)$$. The discussion also references M. R. Spiegel's Mathematical Handbook for integral results and compares these findings with a result from M. Kaku's Quantum Field Theory. The user expresses skepticism about the convergence of the integrals but ultimately finds the derivation plausible.

PREREQUISITES
  • Understanding of complex analysis, specifically Euler's formula.
  • Familiarity with integral calculus, particularly improper integrals.
  • Knowledge of trigonometric identities and their applications in integration.
  • Basic concepts in quantum field theory and path integrals.
NEXT STEPS
  • Study the convergence criteria for improper integrals in complex analysis.
  • Learn about the application of Fourier transforms in evaluating integrals.
  • Explore advanced topics in quantum field theory, focusing on path integrals.
  • Review M. R. Spiegel's Mathematical Handbook for additional integral techniques.
USEFUL FOR

Mathematicians, physicists, and students engaged in advanced calculus, complex analysis, and quantum field theory, particularly those interested in integral evaluations and their applications in theoretical physics.

rocdoc
Gold Member
Messages
43
Reaction score
3
There is nothing wrong with the well known
$$e^{i\theta}=\cos\theta+i\sin\theta$$
for real ## \theta## but what about

$$\int_{-\infty}^\infty~e^{i\theta(p)}\mathrm{d}p=\int_{-\infty}^\infty~\cos\theta(p)\mathrm{d}p+i\int_{-\infty}^\infty~\sin\theta(p)\mathrm{d}p$$
I have been trying to use, with##~a, \alpha ~and~ \beta## all real

$$\int_{-\infty}^\infty~e^{i[a(p+\alpha)^2+\beta]}\mathrm{d}p=\int_{-\infty}^\infty~\cos[a(p+\alpha)^2+\beta]\mathrm{d}p+i\int_{-\infty}^\infty~\sin[a(p+\alpha)^2+\beta]\mathrm{d}p$$
is this OK?
 
Physics news on Phys.org
The integrals that you show usually will not be convergent.
 
mathman said:
The integrals that you show usually will not be convergent.

In my case with ##~a, \alpha ~\text{and}~ \beta## all real, and with ##a## positive, I find ,
$$\int_{-\infty}^\infty~\cos[a(p+\alpha)^2+\beta]\mathrm{d}p=\sqrt \frac{ \pi} {2a} ( \cos\beta-\sin\beta )$$
$$\int_{-\infty}^\infty~\sin[a(p+\alpha)^2+\beta]\mathrm{d}p=\sqrt \frac{ \pi} {2a} ( \cos\beta+\sin\beta )$$
 
Last edited:
I show here , details of working out the expressions for the integrals that I gave previously.
Let
$$I_{cos}=\int_{-\infty}^\infty~\cos[a(p+\alpha)^2+\beta]\mathrm{d}p~~~~~~~~~~~~(1)$$
$$I_{sin}=\int_{-\infty}^\infty~\sin[a(p+\alpha)^2+\beta]\mathrm{d}p~~~~~~~~~~~~(2)$$
Use in EQ(1)
$$\cos(~A+B~)=\cos A\cos B-\sin A\sin B $$
$$I_{cos}=\int_{-\infty}^\infty~\{\cos[a(p+\alpha)^2]\cos\beta-\sin[a(p+\alpha)^2]\sin\beta\}\mathrm{d}p~~~~~~~~~~~~$$
$$I_{cos}=\cos\beta~\int_{-\infty}^\infty~\\cos[a(p+\alpha)^2]\mathrm{d}p - \sin\beta~\int_{-\infty}^\infty~\sin[a(p+\alpha)^2]\mathrm{d}p $$
Substitute ##q=p+\alpha## giving
$$\int_{-\infty}^\infty~\\cos[a(p+\alpha)^2]\mathrm{d}p=\int_{-\infty}^\infty~\\cos(aq^2)\mathrm{d}q$$
$$\int_{-\infty}^\infty~\\sin[a(p+\alpha)^2]\mathrm{d}p=\int_{-\infty}^\infty~\\sin(aq^2)\mathrm{d}q$$
$$I_{cos}=\cos\beta~\int_{-\infty}^\infty~\\cos(aq^2)\mathrm{d}q - \sin\beta~ \int_{-\infty}^\infty~\\sin(aq^2)\mathrm{d}q$$
Use Spiegel, see Reference 1 result 15.50, which I quote '
$$15.50~~~~~~~~\int_0^\infty~\\cos(ax^2)\mathrm{d}x = \int_0^\infty~\\sin(ax^2)\mathrm{d}x= \frac{ 1} {2} \sqrt \frac{ \pi} {2a} $$
' ,for positive ##a## hence as the integrands in 15.50 are even functions of ##x##
$$\int_{-\infty}^\infty~\\cos(ax^2)\mathrm{d}x = \int_{-\infty}^\infty~\\sin(ax^2)\mathrm{d}x= \sqrt \frac{ \pi} {2a}$$
So
$$I_{cos}=\cos\beta \sqrt \frac{ \pi} {2a} - \sin\beta \sqrt \frac{ \pi} {2a} $$
$$I_{cos}= \sqrt \frac{ \pi} {2a} (\cos\beta - \sin\beta ) $$
Similarly but using in EQ(2)
$$\sin(~A+B~)=\sin A\cos B+\cos A\sin B $$
$$I_{sin}= \sqrt \frac{ \pi} {2a} (\cos\beta + \sin\beta ) $$
Reference
1) M. R. Spiegel, Ph.D. , Mathematical Handbook , McGraw-Hill , Inc. , 1968.
 
I don't suppose
$$\tan \beta = \frac{(\cos\beta + \sin\beta) } {(\cos\beta - \sin\beta) }$$
It would be really nice if it were.
 
I have been trying to use, with##~a, \alpha ~\text{and}~ \beta## all real , and ##a## positive, the following
$$\int_{-\infty}^\infty~e^{i[a(p+\alpha)^2+\beta]}\mathrm{d}p=\int_{-\infty}^\infty~\cos[a(p+\alpha)^2+\beta]\mathrm{d}p+i\int_{-\infty}^\infty~\sin[a(p+\alpha)^2+\beta]\mathrm{d}p$$
$$ =I_{cos} + i~I_{sin}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
$$= \sqrt \frac{ \pi} {2a} (\cos\beta - \sin\beta ) +i \sqrt \frac{ \pi} {2a} (\cos\beta + \sin\beta ) $$
$$ =I_{Tot}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
So
$$ I_{Tot}=I_{cos}+i~I_{sin}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
$$= \sqrt \frac{ \pi} {2a} (\cos\beta - \sin\beta ) +i \sqrt \frac{ \pi} {2a} (\cos\beta + \sin\beta ) $$
I show here , some details of working out a polar form for ##I_{Tot}## .
For any complex number ##z##
$$z=c+i~d~~; ~ z=re^{i\theta}~~~\text{where}~r=\sqrt{c^2+d^2},\theta=tan^{-1}\frac{d}{c}$$
Put
$$z=I_{Tot}~; c=\sqrt \frac{ \pi} {2a} (\cos\beta - \sin\beta ) ;~d= \sqrt \frac{ \pi} {2a} (\cos\beta + \sin\beta )$$
$$r=\sqrt{ \frac{ \pi} {a}}$$
$$\theta=tan^{-1}(\frac{ \cos\beta + \sin\beta }{ \cos\beta - \sin\beta })$$
Putting the above together
$$I_{Tot}=\sqrt { \frac{ \pi} {a}} \exp (i~tan^{-1}(\frac{ \cos\beta + \sin\beta }{ \cos\beta - \sin\beta })~~)$$
 
The integral of the absolute value of the integrands are infinite, so I was a little skeptical. However, your derivation seems to be correct.
 
  • Like
Likes   Reactions: rocdoc
jedishrfu said:
Have you run into a problem?
I have started to try to get into path integral formalism in quantum field theory. One thing I have tried to do is to prove a result from Kaku, reference 2, in the way that the author seems to suggest,from Kaku I quote'
$$\int_{-\infty}^\infty~\mathrm{d}p~e^{iap^2+ibp}=\sqrt \frac{i\pi}{a}e^{-ib^2/4a}~~~~~~~~~~~~~(8.18)$$
'. Kaku says this result can be proved by completing the square.The way I have gone about this , is the following.
$$iap^2+ibp = ia(p^2+\frac{b}{a}p )$$
$$~~~~~~~~~~~~~~~~~~~~~~~~=ia[~(p+\frac{b}{2a})^2-\frac{b^2}{4a^2}]$$
Let
$$\frac{b}{2a}=\alpha~~~~~~~~~(3)$$
$$\frac{-b^2}{4a}=\beta~~~~~~~~~~(4)$$
$$iap^2+ibp = i[~a(p+\alpha)^2~+~\beta]$$
$$\int_{-\infty}^\infty~\mathrm{d}p~e^{iap^2+ibp}=\int_{-\infty}^\infty~e^{ i[~a(p+\alpha)^2~+~\beta] }\mathrm{d}p~~~~~~~(5)$$
The integrals in EQ(5) are what have been called ##I_{Tot}##. According to EQ(8.18)
$$I_{Tot}=\sqrt \frac{i\pi}{a}e^{-ib^2/4a}~~~~~~~~$$
$$~~~~~~~~~~=\sqrt \frac{i\pi}{a}\exp(i\beta)~~~~~~~~~(6)$$
However , what has been derived in this thread is
$$I_{Tot}=\sqrt { \frac{ \pi} {a}} \exp (i~tan^{-1}(\frac{ \cos\beta + \sin\beta }{ \cos\beta - \sin\beta })~~)~~~~~~(7)$$

I have a problem with the above (for example).Reference:
2) M.Kaku , QuantumField Theory, A Modern Introduction , Oxford University Press, Inc. , 1993.
 
  • #10
One thing I should change is, I should put

$$\int_{-\infty}^\infty~e^{i[a(p+\alpha)^2+\beta]}\mathrm{d}p=e^{i\beta}\int_{-\infty}^\infty~e^{i[a(p+\alpha)^2]}\mathrm{d}p$$
 
  • #11
It's looking good now.
 
  • #12
Perhaps even EQ(7) is correct?
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K