f:[a,infinity)-->R is continuous with f(x) > 0 for all x in [a,infinity),...
Suppose "a" belongs to R, and f:[a,infinity)-->R is continuous with f(x) > 0 for all x in [a,infinity) and limf(x)=1 (as x goes to infinity). Prove that there exists r>0 such that f(x)>r for all x in [a,infinity).