Write the integrand as
$$\frac{1+x^2 \log(x)}{x+x^2 \log(x)}= 1+\frac{1}{x}-\frac{1+\log(x)}{1+x\log(x)}$$
Now integrate:
$$ \int \frac{1+x^2 \log(x)}{x+x^2 \log(x)}dx=x+\log(x)-\log(1+x\log(x))+C$$
Over the years I have gained a lot of experience in evaluating definite integrals. So that's why I knew which trick can be applied here. The reason behind that particular definition of $T_n$ is the symmetry of the integral.
The integral at the end of your post is actually $T_{n-1}$.
I know another solution using the residue theorem but I think that would be too hard for you to understand and probably not appropriate for the calculus section. :)
Show that
\[\prod_{k=2}^{\infty} \left(\frac{2k+1}{2k-1}\right)^{k} \left(1-\frac{1}{k^2}\right)^{k^2}=\frac{\sqrt{2}}{6}\pi \]
This problem can be solved using only elementary methods. :D
Yes, that's a good paper. By the way, I worked out the case $x=\frac{1}{3}$:
$$\sum_{n=1}^\infty \frac{\log(n)}{n^2}\cos\left(\frac{2\pi}{3}n \right)=\frac{\pi^2}{36}\log\left(\frac{12\pi^2 e^{2\gamma}}{A^{24}} \right)$$
I got
$$
\sum_{n=1}^\infty \frac{\log(n)\cos(2\pi n x)}{n^2}=-\zeta'(2)+\pi^2 \left(x-x^2\right)\left( \log(2\pi)+\gamma -1\right) -2\pi^2 x \log \Gamma(x)+2\pi^2 \log \text{G}(x+1)+\frac{\pi}{2}\text{Cl}_2(2\pi x)
$$
where $G(z)$ denotes the Barnes G Function and $\text{Cl}_2(z)$ is the...
The Riemann hypothesis (in the language of Integrals and Series ):
$$\int_{0}^{\infty}\frac{(1-12t^2)}{(1+4t^2)^3}\int_{1/2}^{\infty}\log|\zeta(\sigma+it)|~d\sigma ~dt=\frac{\pi(3-\gamma)}{32}$$
where $\gamma$ denotes the Euler Mascheroni Constant.
Reference: V. V. Volchkov, On an equality...
Well done RV! :)
Now, I am going to modify this problem slightly to make it even more challenging.Show that
$$
\int_0^{\pi\over 2}\frac{\log(\tan x)}{\sqrt{2} \sin(x)+\sqrt{1+\sin^2 x}}dx = \frac{1}{\sqrt{2\,\pi}}\left(1+\frac{\log 2}{4}...
Show that
$$\int_0^{\frac{\pi}{2}}\frac{\log \tan \theta}{\sqrt{1+\cos^2 \theta}}d\theta = \frac{\log 2}{16 \Gamma \left(\frac{3}{4} \right)^2}\sqrt{2\pi^3}$$
This integral is harder than the http://mathhelpboards.com/challenge-questions-puzzles-28/integration-challenge-7720.html. :D