MHB Ready to Tackle an Advanced Calculus Challenge?

AI Thread Summary
The discussion revolves around evaluating the integral $$\int_0^{\frac{\pi}{2}}\frac{\log \tan \theta}{\sqrt{1+\cos^2 \theta}}d\theta$$ and demonstrating its equivalence to another integral form. Participants highlight the use of transformations and substitutions, particularly involving the tangent function and elliptic integrals, to simplify the problem. The solution ultimately connects to known results involving the Gamma function and elliptic integrals, revealing a complex relationship between these mathematical entities. A modified version of the integral is proposed for further exploration, adding to the challenge. The conversation showcases advanced techniques in calculus and integral evaluation.
Shobhit
Messages
21
Reaction score
0
Show that

$$\int_0^{\frac{\pi}{2}}\frac{\log \tan \theta}{\sqrt{1+\cos^2 \theta}}d\theta = \frac{\log 2}{16 \Gamma \left(\frac{3}{4} \right)^2}\sqrt{2\pi^3}$$

This integral is harder than the http://mathhelpboards.com/challenge-questions-puzzles-28/integration-challenge-7720.html. :D
 
Mathematics news on Phys.org
I'm just going to show that it is equivalent to another definite integral.
$$ \int_0^{\pi /2}\frac{\log ( \tan x) }{\sqrt{1+\cos^2 x }}\ dx = \int_{0}^{\pi /2} \frac{\log (\tan x)}{\sqrt{2-\sin^{2} x}} \ dx = \frac{1}{\sqrt{2}} \int_{0}^{\pi /2} \frac{\log(\tan x)}{\sqrt{1- \frac{1}{2} \sin^{2} x}} \ dx $$Let $ u = \tan x$.$$ = \frac{1}{\sqrt{2}} \int_{0}^{\infty} \frac{\log u}{\sqrt{1- \frac{1}{2} \frac{u^{2}}{1+u^{2}}}} \frac{1}{1+u^{2}} \ du = \int_{0}^{\infty} \frac{\log u}{\sqrt{\frac{2+u^{2}}{1+u^{2}}}} \frac{1}{1+u^{2}} \ du = $$

$$ = \int_{0}^{\infty} \frac{\log u}{\sqrt{(1+u^{2})(2+u^{2})}} \ du = \int_{0}^{\infty} \frac{\log u}{\sqrt{(1+u^{2})(1 - i^2+u^{2})}} \ du $$There is a formula that states $$ \int_{0}^{\infty} \frac{\log x}{\sqrt{(1+x^{2})(1-k^{2} + x^{2})}} \ dx = \frac{1}{2} K(k) \ln( \sqrt{1-k^{2}})$$

where $K(k)$ is the complete elliptic integral of the first kind.A derivation in one of Victor Moll's papers uses a crazy-looking hypergeometric identity.So anyways

$$ \int_0^{\pi /2}\frac{\log ( \tan x) }{\sqrt{1+\cos^2 x }}\ dx = \frac{1}{2} K(i) \ln (\sqrt{2}) = \frac{\log 2}{16 \sqrt{2 \pi}} \Gamma^{2} \left( \frac{1}{4} \right)$$

which by the Gamma reflection formula is equivalent to the answer given
 
Not surprised to see elliptic integrals and hypergeometric functions involved. I tried to solve it with no success.
 
Well done RV! :)

Now, I am going to modify this problem slightly to make it even more challenging.Show that

$$
\int_0^{\pi\over 2}\frac{\log(\tan x)}{\sqrt{2} \sin(x)+\sqrt{1+\sin^2 x}}dx = \frac{1}{\sqrt{2\,\pi}}\left(1+\frac{\log 2}{4} \right)\Gamma\left(\frac34\right)^2-\frac{\sqrt{2\,\pi^3}}{8\Gamma\left(\frac34\right)^{2}}+(\log 2-1)\,\sqrt2
$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top