Thanks Fred. But this is just a generic solution to the Ornstein-Uhlenbeck equation as far as I can tell? The question is, how do I go from this coupled system of SDEs I have above to an SDE in a single variable that I can solve. Or am I misunderstanding you?
Hope you can say a bit more about...
There's no ##dy/dt## in the second equation. I could of course divide by ##dt##, but I don't believe we are allowed to as ##dW## is not differentiable due to it being Wiener noise (?)
In order to solve for ##x##, I need to re-write the equation for ##dx## so it is independent of ##y## and ##dy##. However, I am having some issues with this. Can someone give me a push in the right direction?