Recent content by ƒ(x) → ∞

  1. Ƒ

    Second derivatives to find max and min values then sketch graph

    Just find the gradient of point + or - 0.001 of the stationary point and the nature will seem obvious
  2. Ƒ

    Physics in Movies: The Blues Brothers & The Man With The Golden Gun

    Is it just me or does physics seem unrealistic when involved in movies? I have two examples: The Blues Brothers (with a classic scene) and the James Bond Classic The Man With The Golden Gun
  3. Ƒ

    Fortran Can You Loop Numbers and Write an Output File in Fortran?

    Is it possible to loop a set of numbers? For example I wish to run a set of number 1,2,3,4,5...52 but when we get to 52 I wish to go back to 1 and start looping again. How do write an output file in Fortran? I have opened a file and moved each character so that each letter has moved for...
  4. Ƒ

    A Problem I Was Considering But Seems So Simple

    A ball is thrown up in the air and the speed of the ball at the second second is equal to the speed of the ball after the third second. But what would be the velocity of the ball when the time equals zero. I have been thinking about this a lot and I'm certain that there are two answers (and I...
  5. Ƒ

    Three Equations, Three Unknowns.

    Homework Statement But somehow not that simple.. \frac{5xy}{x+y} =6\left. \frac{7yz}{y+z} =10\left. \frac{8zx}{z+x} =15\left. Homework Equations The Attempt at a Solution Tried and failed.
  6. Ƒ

    Finding the square root of a+bi (complex number)

    Even if a and b are not real the "i" will cancel out giving two solutions which are the same.
  7. Ƒ

    Fortran Simple Fortran Program With Random Numbers

    I have been busy trying to generate, using FORTRAN's random number generator, random x and y co-ordinates which follow a simple pattern such as x2-100x, but for some reason the FORTRAN compiler prints nothing. Anybody want to help me with this problem? program quadraticdistribution...
  8. Ƒ

    Sampling With The Normal Distribution

    p(\mu-(\sigma/2)\leq\overline{X}\leq\mu+(\sigma/2)>0.95 =p(-\sqrt{n}/2\leqz\leq\sqrt{n}/2)>0.95 =\phi(\sqrt{n}/2) - (1-(\phi(\sqrt{n}/2))>0.95 =2\phi(\sqrt{n}/2)-1>0.95 =2\phi(\sqrt{n}/2)>1.95 =\phi(\sqrt{n}/2)>0.975 =(\sqrt{n}/2)>(\phi-1)(0.975) =(\sqrt{n}/2>1.96...
  9. Ƒ

    Sampling With The Normal Distribution

    Got it now. It comes out n>16 so at least n=16. I used a different method which I will post now.
  10. Ƒ

    Sampling With The Normal Distribution

    Do you mean \bar{X}~N(\mu,\sigma2/n) Where do I go from here if I knew the probability then I think I could manage.
  11. Ƒ

    Sampling With The Normal Distribution

    I have been puzzling over this problem for about a week now and cannot find the answer. In my opinion it is very theoretical, but I know I ma not the best mathematician on here so maybe someone else could look at this. Thank you.
  12. Ƒ

    Fortran Solving Problems in Fortran Code for Prime Numbers

    Everytime I try to compile the followng code, it fails to give me the values when n is greater than one, I have tried and failed to correct that mistake, can you help? program sieve implicit none integer*1 s(1000000), offset (10), sequence integer i, j, n c INITIALISATIONS: n=0...
  13. Ƒ

    Comp Sci What Is the Last Prime Quadruplet in the Sequence i, i+2, i+6, i+8?

    I think that my compiler has a bug in it, because it cannot even compile a correct code. Are there any online compilers?
  14. Ƒ

    Comp Sci What Is the Last Prime Quadruplet in the Sequence i, i+2, i+6, i+8?

    Sorry Mark44. I am looking for groups of primes. I am basically looking for prime quadruplets that differ by 2 and 6 and 8. For example {5, 7, 11, 13}
Back
Top