Why does Binomial dist. converge in distribution to Poisson dist. ?

AI Thread Summary
The discussion centers on the convergence of the Binomial distribution to the Poisson distribution in terms of cumulative density functions (CDFs) and probability density functions (PDFs). It is clarified that while the convergence of PDFs can imply convergence of CDFs, one must specify the type of convergence being discussed. The conversation references Scheffe's Theorem, which states that pointwise convergence of discrete PDFs leads to convergence in distribution of their associated CDFs. The initial question about the relationship between the two distributions highlights the importance of independence and the limit of events in a non-overlapping interval. Overall, the thread emphasizes the need for a rigorous understanding of convergence types in probability theory.
jojay99
Messages
10
Reaction score
0
Hey guys,

In class, I was shown that the Binomial prob density function converges to the Poisson prob density function. But why does this show that the Binomial distribution converges in distribution to the Poisson dist. ? Convergence in distribution requires that the cumulative density functions converges (not necessarily the prob density functions).

Is it because both are non negative and start at zero --> therefore convergence in prob. density functions implies converges in cumulative density functions?

Thank you.
 
Last edited:
Physics news on Phys.org
Hey jojay99 and welcome to the forums.

For this example, you should let the number of events in an interval go to infinity but keep the independence property of the binomial that each event is independent and this translates into the property that they do not overlap.

So in the binomial we considered getting so many successes which can be thought of as the number of times an event happens within an interval. But each interval is completely disjoint from every other.

So we take a limit where we consider the distribution of an infinite number of events being possible in that particular interval. In the binomial we had n+1 possibilities ranging from 0 to n, but now we are letting that become infinitely many in one single non-overlapping interval.

The identity to get the exponential relates to the limit form of (1 + 1/n)^n.

I did a google search that does it much better than me, but hopefully the above gives you a non-mathematical explanation of what is going on.

http://www.the-idea-shop.com/article/216/deriving-the-poisson-distribution-from-the-binomial
 
Last edited by a moderator:
So convergence in the probability density functions implies that the cdfs converges?
 
jojay99 said:
So convergence in the probability density functions implies that the cdfs converges?

The CDF is uniquely determined by the PDF so there is a one to one correspondence with a PDF to the CDF. We also assume the PDF is a proper PDF satisfying the Kolmogorov Axioms.
 
jojay99 said:
So convergence in the probability density functions implies that the cdfs converges?

There are several types of convergence defined for sequences of functions and there are several types of convergence defined for random variables. So you'd have to say what type of convergence you're talking about before I'd believe that implication.

I think this PDF deals with you question: http://www.google.com/url?sa=t&rct=...sg=AFQjCNGYITECDXIxnnXU7geHq5-VIJQQLw&cad=rja On page 2, it cites "Scheffe's Theorem" as proving that "pointwise" convergence of a sequence of discrete PDFs to a discrete PDF implies convergence "in distribution" of the associated CDFs.

You are correct that what was shown in your class was not a sufficient proof. And, of course, Scheffe's theorem itself requires a proof.
 
Last edited:
Thank you guys for your help.

Yeah, I was referring to point wise convergence of the pdfs.

I always thought that Scheffe's Theorem only applied to continuous random variables. I guess I'm wrong.
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...
Back
Top