Relativistic and not relativistic motions

  • Thread starter Thread starter bernhard.rothenstein
  • Start date Start date
  • Tags Tags
    Relativistic
bernhard.rothenstein
Messages
991
Reaction score
1
We say that the uniformly accelerated motion x=gtt/2 is not a relativistic motion because after a sufficiently long time of motion v=gt can exceed c. we say that x=cc/g(coshgt'/c-1) is a relativistic motion because the velocity of the motion it describes never becomes c. Do you know other such "relativistic motions?"
sine ira et studio
 
Physics news on Phys.org
Just integrate dp/dt=f(t) for any function f(t), and you will have a
"relativistic motion". If you want x(t), just find v=dx/dt from
v=p/\sqrt{p^2+m^2}, and integrate.
 
Alternately, given any function v(t) < c, one can compute the acceleration required to cause the specified motion. The only thing "special" about special relativistic motion is that |v(t)| < 1. One can also show that the rate of change of momentum with respect to time becomes infinite as v->c, i.e.

<br /> \frac{dp}{dt} = \frac{dp}{dv} \frac{dv}{dt} = \frac{m}{{\left( 1 - \frac{v^2}{c^2} \right)} ^ \frac{3}{2}} \frac{dv} {dt}<br />

Thus as v->c, dp/dt becomes infinite.

One does not really need dynamics to see this, the fact is that if one adds together any number of velocities less than 'c' using the SR velocity addition formula, one gets a resultant velocity less than 'c'.

The process of accelerating is just a process of "adding to" one's original velocity. One must use the SR form of the velocity additon law.

Delta-v = a * delta t

is true only in the objects rest frame, the SR velocity additon formula converts the delta-v in the objects rest frame into the delta-v in the coordinate frame.
 
Last edited:
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top