Dimensions and the Generating Functional

TriTertButoxy
Messages
190
Reaction score
0
Something seems a little weird to me: What are the dimensions of a generating functional, Z[j] -- say for real scalar field theory?

Z[j]=\int\mathcal{D}\phi\,\exp\, i\!\int d^4x\left(\frac{1}{2}\partial_\mu\phi\partial^\mu\phi-\frac{1}{2}m^2\phi^2+j\phi\right)​

Also, what about mass dimensions of the generating functional for connected Green's functions, W[j]? This is defined in terms of the log of the generating functional, Z[j].

Z[j]=e^{iW[j]}​

This seems a little pathological...
 
Physics news on Phys.org
Both Z and W are dimensionless. This is obvious for W, since you couldn't put it into the exponential if it wasn't. As for Z, it's usually defined as the vacuum-to-vacuum transition amplitude in the presence of the source j, and this equals one if there is no source, so Z[0]=1. Thus Z[j] must be dimensionless. To get Z[0]=1, a normalization factor must be implicitly included in the measure over the fields.

None of this is specific to field theory. Similar statements apply to path integrals in NRQMOP (non-relavitistic quantum mechanics of one particle :smile:).
 
Ah, so you mean in order for Z[0]=1, the integration measure, \mathcal{D}\phi, must be normalized such that it is unitless.

I understand now. thanks, Avodyne!
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top