Schwarzschild metric as induced metric

paweld
Messages
253
Reaction score
0
According to Nash theorem http://en.wikipedia.org/wiki/Nash_embedding_theorem" every Riemannian manifold can be isometrically embedded
into some Euclidean space. I wonder if it's true also
in case of pseudoremanninan manifolds. In particular is it possible to find
a submanifold in pseudoeuclidean space that, the metric induced on it will be
Schwarzschild metric? How many dimensions we need?
 
Last edited by a moderator:
Physics news on Phys.org
Chris Clarke* showed that every 4-dimensional spacetime can be embedded isometically in higher dimensional flat space, and that 90 dimensions suffices - 87 spacelike and 3 timelike. A particular spacetime may be embeddable in a flat space that has dimension less than 90, but 90 guarantees the result for all possible spacetimes.

* Clarke, C. J. S., "On the global isometric embedding of pseudo-Riemannian
manifolds," Proc. Roy. Soc. A314 (1970) 417-428
 
You need 6 dimensions to embed a Schwarzschild solution. I think that all GR solutions can be (locally) embedded in 10 dimensions.
 
Passionflower said:
You need 6 dimensions to embed a Schwarzschild solution.
How do you know it?
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top