Tortoise-like coordinate transform for interior metric

FunkyDwarf
Messages
481
Reaction score
0
Hello!

When using the Schwarzschild exterior metric in the klein-gordon equation one can perform the standard tortoise(E-F) coordinate transform to yield a wave equation which has a well defined potential that is independent of the energy term. My understanding is that the motivation for this coordinate transform was the removal of the coordinate singularity at the horizon of this metric. If one wanted to generate a wave equation from an INTERIOR metric, say the Schwarzschild interior, that also had a well defined potential independent of energy, on what premise would one start, given that if we want to consider a fluid sphere there is no singularity at the horizon?

Certainly i can take the wave equation and put it in a Schrodinger-like form but this yields an effective potential with the energy term coupled to coordinate terms which I must admit i don't know how to transform away without re-instating the first derivative (ie no longer in schrodinger form).

Hope that makes sense!
 
Physics news on Phys.org
Don't know if it's what you want, but one way of arriving at Eddington-Finkelstein coordinates is to find a retarded time that serves to eliminate the dr2 term in the metric. This can be done in general. For

ds2 = A(r)2 dt2 - B(r)2 dr2 + ...

just let u = t ± integral(B/A dr)
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top