Eigenvalues for X’s Pauli's matrix

USeptim
Messages
98
Reaction score
5
Let it be the X coordinate Pauli's matrix:
\begin{array}{ccc}
0 & 1 \\
1 & 0 \end{array}

According to my calculations, it's eigenvectors would require that the spinor components to take the same value, but then, in order to have two orthogonal eigenvectors, we would need the complex components to be orthogonal when doing the dot product.

I choose the eigenvectors ψ_1 =[1, 1] and ψ_2 = [i, i]. Then the dot product must be

ψ_1 · ψ_2 = 1 · i + 1 · i = 0.

That means that orthogonal phases inside the same spinor component must be treated as orthogonal components. Is that true?
 
Physics news on Phys.org
No. Your ψ_2 is proportional your ψ_1; they are not linearly independent. Their dot product of is 2i, not zero. Try [1, 1] and [1, -1] as a complete set of orthogonal eigenvectors.
 
Thanks The_duck.

With [1, -1] after I pass the Sx operator I'll get [-1, 1], it's the same vector with a diferent phase so it's a valid eigenvector.

My mistake was that I forgot the phase factor after the operator. For the [1,1] vector the phase is 0 and for the [-1, 1] it's ∏.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top