yogi
- 1,523
- 10
A similar but not identical situation to the cosmological twin problem occurs if there are two satellite clocks A and B in identical orbits but moving in opposite directions - If they cross at point X and sync their clocks, then when they have each completed one orbit and pass again at X, each will believe the other clock is running slow - but with only this information, you cannot tell which if either is running slow. Suppose clock A and B are originally on the same satellite and synchronized togther while traveling at orbital velocity v East to West and when point X is reached, clock B is quickly accelerated to -v so that it now travels at orbital velocity v West to East. Which if either of the two clocks will have logged a greater time when they meet again at X?
As with the cosmological twin paradox, the conditions under which the initial synchronization takes place must be unambiguously defined.
As with the cosmological twin paradox, the conditions under which the initial synchronization takes place must be unambiguously defined.