Solve Rigid Body Motion: Find Angle Between Axis & Invariable Line

schuksj
Messages
4
Reaction score
0
I am having problems figuring out this problem. A rigid body having an axis of symmetry rotates freely about a fixed point under no torques. If alpha is the angle nbetween the axis of symmetry and hte instantous axis of rotaiton, show that he angle between the axis of rotaiton(omega) and the invariable line(L) is tan^-1((Is-I)*tan(alpha)/(Is+ I*tan(alpha)^2)).

Using Euler equations:

omega y'=omega*sin(alpha)
omega z'=omega*cos(alpha)
Ly'=I*omega*sin(alpha)
Lz'=Is*omega*cos(alpha)

and Ly'/Lz'=tan(theta)=I/Is=tan(alpha)

Would the cross product of omega and L give me the angle between the axis of rotation and the invariable line? I am not sure how to begin this problem or if this is the right start.
 
Physics news on Phys.org
What exactly are I and Is? I see the possibility of another angle in the problem. If alpha is the angle between the symmetry axis and omega (it looks like you have used z as the symmetry axis), then there is some angle beta between the symmetry axis and the angular momentum. That would make

Ly'=L*sin(beta)
Lz'=L*cos(beta)

The angle theta would be (alpha - beta). The components of L are related to the components of ω by the moment of inertial tensor. If you know the components of L in terms of ω then you can find the magnitude of L and cross product L x ω as you suggested to find sin(theta) and theta.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top