What forces must be considered in non-inertial rotating reference frames?

AI Thread Summary
In non-inertial rotating reference frames, both real forces, such as centripetal force, and fictitious forces, like centrifugal force, must be considered. While objects appear at rest within the rotating frame, real forces still act on them, such as friction in the case of a block on a spinning turntable. The centripetal force, which is the net force directed toward the center, is essential for understanding motion from an inertial perspective. In the rotating frame, to apply Newton's laws effectively, the fictitious centrifugal force must be included alongside the real forces. Understanding these dynamics is crucial for accurately analyzing motion in non-inertial frames.
ergonomics
Messages
14
Reaction score
0
dealing with non-inertial rotating reference frames, real forces such as the centripetal force need to be taken into account,or only the forces that can be really observed within the frame?

because from the perspective of the rotating frame, objects should be at rest. it only appears logical to replace the centripetal force with the centrifugal force when dealing in rotating frames.
 
Physics news on Phys.org
Real forces always count. "Real" forces have agents as opposed to "fictitious" inertial forces that are artifacts of using a noninertial frame of reference.

Note: "centripetal" force just means a force that acts toward the center (or the net force acting toward the center)--it's not a separate kind of force.

Example: Imagine a spinning turntable on which a small block sits. The block spins along with the turntable. From an inertial frame, the block is centripetally accelerated; the centripetal force is the friction between turntable and block.

From the rotating frame that very real friction force still acts, but now the acceleration is zero: In addition to the real friction force, one needs to add the "fictitious" centrifugal force in order to use Newton's laws.
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top