Let the vectors from the origin to the 3 points you know be \vec{p}_1,\vec{p}_2,\vec{p}_3, and call the vector from the origin to the center point \vec{c}. Our goal is to find \vec{c}.
The vector from point 1 to the center, \vec{p}_1-\vec{c}, must be the same length as the vector from point 2 to the center, \vec{p}_2-\vec{c}, which must be the same length as the vector from point 3 to the center, \vec{p}_3-\vec{c}. In other words, we have the following 3 equations:
\left(\vec{c}-\vec{p}_1\right)\cdot\left(\vec{c}-\vec{p}_1\right)=\left(\vec{c}-\vec{p}_2\right)\cdot\left(\vec{c}-\vec{p}_2\right)
\left(\vec{c}-\vec{p}_1\right)\cdot\left(\vec{c}-\vec{p}_1\right)=\left(\vec{c}-\vec{p}_3\right)\cdot\left(\vec{c}-\vec{p}_3\right)
\left(\vec{c}-\vec{p}_2\right)\cdot\left(\vec{c}-\vec{p}_2\right)=\left(\vec{c}-\vec{p}_3\right)\cdot\left(\vec{c}-\vec{p}_3\right)
Focus on the first one. We can multiply this out and simplify (note the cancellation of \vec{c}\cdot\vec{c}):
\left(\vec{c}-\vec{p}_1\right)\cdot\left(\vec{c}-\vec{p}_1\right)=\left(\vec{c}-\vec{p}_2\right)\cdot\left(\vec{c}-\vec{p}_2\right)
-2\vec{c}\cdot\vec{p}_1+\vec{p}_1\cdot\vec{p}_1=-2\vec{c}\cdot\vec{p}_2+\vec{p}_2\cdot\vec{p}_2
\vec{c}\cdot\left(\vec{p}_2-\vec{p}_1\right)=\left(\vec{p}_1\cdot\vec{p}_1-\vec{p}_2\cdot\vec{p}_2\right)/2
The same thing could be done for the other 2 starting equations, in which case we get the following 3 results:
\vec{c}\cdot\left(\vec{p}_2-\vec{p}_1\right)=\left(\vec{p}_1\cdot\vec{p}_1-\vec{p}_2\cdot\vec{p}_2\right)/2
\vec{c}\cdot\left(\vec{p}_3-\vec{p}_1\right)=\left(\vec{p}_1\cdot\vec{p}_1-\vec{p}_3\cdot\vec{p}_3\right)/2
\vec{c}\cdot\left(\vec{p}_3-\vec{p}_2\right)=\left(\vec{p}_2\cdot\vec{p}_2-\vec{p}_3\cdot\vec{p}_3\right)/2
If we recast these 3 equations in matrix form, we get,
\left(\begin{matrix}\vec{p}_2-\vec{p}_1 \\ \vec{p}_3-\vec{p}_1 \\ \vec{p}_3-\vec{p}_2\end{matrix}\right)\cdot\vec{c} = \frac{1}{2}\left(\begin{matrix}\vec{p}_1\cdot\vec{p}_1-\vec{p}_2\cdot\vec{p}_2 \\ \vec{p}_1\cdot\vec{p}_1-\vec{p}_3\cdot\vec{p}_3 \\ \vec{p}_2\cdot\vec{p}_2-\vec{p}_3\cdot\vec{p}_3 \end{matrix}\right)
Then multiplying both sides by the matrix inverse, we get the center, \vec{c}.
\vec{c} = \frac{1}{2}\left(\begin{matrix}\vec{p}_2-\vec{p}_1 \\ \vec{p}_3-\vec{p}_1 \\ \vec{p}_3-\vec{p}_2\end{matrix}\right)^{-1}\left(\begin{matrix}\vec{p}_1\cdot\vec{p}_1-\vec{p}_2\cdot\vec{p}_2 \\ \vec{p}_1\cdot\vec{p}_1-\vec{p}_3\cdot\vec{p}_3 \\ \vec{p}_2\cdot\vec{p}_2-\vec{p}_3\cdot\vec{p}_3 \end{matrix}\right)
You can find the radius by taking the length of the vector from the center to one of the points on the circle,
R =\left|\vec{c}-\vec{p}_1\right|