dimensionless
- 460
- 1
A function f(t) can be represented by the expansion
<br /> f(t) = \frac{1}{2}A_{0} + A_{1}cos(\omega t) + A_{2}cos(2 \omega t) + A_{3}cos(3 \omega t) + ...<br /> B_{1}sin(\omega t) + B_{2}sin(2 \omega t) + B_{3}sin(3 \omega t) + ...<br />
Do the constants A_{n} and B_{n} the same thing as the real and imaginary components of the Fourier transform? If so, why is there no imaginary component in the zeroth term?
<br /> f(t) = \frac{1}{2}A_{0} + A_{1}cos(\omega t) + A_{2}cos(2 \omega t) + A_{3}cos(3 \omega t) + ...<br /> B_{1}sin(\omega t) + B_{2}sin(2 \omega t) + B_{3}sin(3 \omega t) + ...<br />
Do the constants A_{n} and B_{n} the same thing as the real and imaginary components of the Fourier transform? If so, why is there no imaginary component in the zeroth term?