Manifold & Metric: Does it Need a Metric?

  • Thread starter Thread starter princeton118
  • Start date Start date
  • Tags Tags
    Manifold Metric
princeton118
Messages
33
Reaction score
0
Does a manifold necessarily have a metric?
Does a manifold without metric exist? If it exists, what is its name?
 
Mathematics news on Phys.org
Since a manifold is locally Euclidean, it must always have a local metric. However, it does not follow that there will be a "distance" between ANY two points and so there may not be a "global" metric.
 
the hierarchy is something like this. You take a set. Add a topology. It becomes a tpological space. Add an atlas, it becomes a topological manifold. Change for a differentiable atlas. It becomes a differential manifold. Add a Riemannian or Pseudo-Riemannian of Lorentzian or whatever metric and it becomes a Riemannian (resp. Pseudo-Riemannian, Lorentzian, whatever) manifold.
 
Topological manifolds (sets with a topology locally homeomorphic to Rn) do not necessarily admit a metric. There are then many non-metrizable manifolds, such as the Prüfer manifold. Urysohn's metrization theorem will let you know if your manifold is metrizable.
 
Last edited:
Ditto slider142 about topological manifolds. I have a hunch the OP will need to know that "metric space" is not the same thing as the notion of "metric tensor" from Riemannian geometry, although they are certainly related. But "metric tensor" from Lorentzian geometry is not much like "metric" from "metric space"!

About smooth manifolds: you can give a smooth manifold additional structure, perhaps by defining a Riemannian or Lorentzian metric tensor. As Halls hinted, as per the fundamental local versus global distinction in manifold theory, even after defining a Riemannian or Lorentzian metric tensor, there will be multiple distinct notions of "distance in the large" which may or not correspond roughly to the notion of "metric" fro m "metric space". In particular, Lorentzian metrics get their topology from the (locally euclidean) topological manifold structure, not from the bundled indefinite bilinear form.

(I'm being a bit more sloppy than usual due to PF sluggishness.)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top