Vbe temperature coefficient of transistors

Click For Summary
The Vbe temperature coefficient of -2 mV/°C indicates that as temperature rises, the base-emitter voltage (Vbe) decreases, which can lead to an increase in base current (Ib) and subsequently collector current (Ic). This occurs because the increase in Ib, coupled with the rise in beta (current gain) at higher temperatures, results in a net increase in collector current despite the lower Vbe. Additionally, higher temperatures provide more charge carriers, making the junction easier to conduct, which further contributes to increased current flow. The relationship between Vbe and collector current is complex and involves temperature-dependent parameters like saturation current (Ies). Understanding these dynamics is crucial to prevent issues like thermal runaway in transistor circuits.
bitrex
Messages
190
Reaction score
0
Something I'm having trouble grasping - if the Vbe temperature coefficient is -2 mv/degree C, why does the collector current INCREASE instead of decrease with increasing temperature? If the temperature rises and the voltage base to emitter drops, wouldn't the smaller Vbe cause less emitter current to flow?
 
Engineering news on Phys.org
A decease in VBE means an increase in Ib. This increase causes the collector current to increase. Also beta increases with temperature. The increase in base current is like saying the input resistance has decreased with rising temperature giving a net effect of a decreased VBE. These are all factors that cause the collector current to increase from its Q-point value.
 
When we say that Vbe goes down 2 mV per degree C, that is based on a specific current value. Any p-n junction exhibits this characteristic. At 25 deg C ambient, with 1.0 mA of forward current, a p-n junction measures 0.65 V forward drop. If the temperature is elevated to 50 deg C, then the forward voltage drop of the junction decreases (2 mV/deg C) * 25 deg C = 50 mV, as long as the current is the same. Thus at 50 deg C with 1.0 mA of forward current, the forward voltage drop is 50 mV less than the 0.65 V at 25 C, which is 0.60 V.

At higher temperature, a p-n junction has more carriers available due to increased thermal energy. Hence at 50 C, the junction is easier to drive than at 25 C. A given current incurs a smaller voltage drop at higher temp.

Does this help?

Claude
 
Last edited:
I think I understand now. Say I have a transistor in CE configuration with an emitter resistor, biased for some current. I have the base biased to say 1.6 volts at ambient temperature, so the transistor is in its active region, so the voltage across that emitter resistor 1.6-0.6 = 1 volt. Now, if the temperature increases, the voltage drop across the base to emitter junction might decrease to 0.5 volts, in which case I have 1.6-0.5 = 1.1 volts across the emitter resistor, which tends to increase the emitter and hence the collector current. This could lead to thermal runaway if there were no resistor to apply negative feedback where the increased current generates heat, which causes the Vbe drop to decrease more, generating more heat, etc. Does that sound about right? I think I was confused because I was mistaking the intrinsic base to emitter drop, which changes with temperature, to the applied voltage base to emitter, which determines the emitter current through the Ebers-Moll model.
 
You've got it right. To determine the actual Ie via E-M model involves a transcendental equation solution, not straightforward. The 2 equations are

1) Vbb - Vbe = Vre = IeRe, or Vbe = Vbb - IeRe.

2) Vbe = Vt * ln((Ie/Ies(T)) + 1)), where Ies(T) is a strong function of temperature, the saturation current (aka "scaling current"), Vt = thermal voltage = kT/q, as k = the Boltzmann constant, T = absolute temp, & q = charge of 1 electron.

The difficulty is that Ies is temperature dependent. The best method is what you did. Use the spec sheet graphs to find Vbe at various temps. But your thinking is sound. You seem to have a good grip on the basics.

Claude
 
Thread 'I thought it was only Amazon that sold unsafe junk'
I grabbed an under cabinet LED light today at a big box store. Nothing special. 18 inches in length and made to plug several lights together. Here is a pic of the power cord: The drawing on the box led me to believe that it would accept a standard IEC cord which surprised me. But it's a variation of it. I didn't try it, but I would assume you could plug a standard IEC cord into this and have a double male cord AKA suicide cord. And to boot, it's likely going to reverse the hot and...

Similar threads

  • · Replies 19 ·
Replies
19
Views
2K
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K