Why are massless photons affected by gravity?

jtbell
Staff Emeritus
Science Advisor
Homework Helper
Messages
16,023
Reaction score
7,539
In general relativity, gravitation is a manifestation of the curvature of spacetime. The motion of all objects is affected by this curvature, regardless of whether they have mass or not. Light follows geodesic paths in spacetime, which are straight lines in flat spacetime, and curved paths in curved spacetime.

Note that by "mass" above I mean "invariant mass" as discussed in the following FAQ:

https://www.physicsforums.com/showthread.php?t=511175

because it is the invariant mass that is zero for a photon. If you prefer to think in terms of "relativistic mass" (which is related to energy via E = m_{rel} c^2, note that all photons (as far as we know) follow the same geodesics, regardless of their energy. This has been verified, for example, by comparing the deflection of visible light as it passes close to the sun, with the deflection of radio waves from distant sources.

The following forum members have contributed to this FAQ:
jtbell
 
Last edited by a moderator:
  • Like
Likes Manpriyam
Physics news on Phys.org
jtbell said:
In general relativity, gravitation is a manifestation of the curvature of spacetime. The motion of all objects is affected by this curvature, regardless of whether they have mass or not.
So, in GR there are no attractive forces between two masses?
 
Mass produces spacetime curvature (as do energy and momentum), so two masses affect each other gravitationally. Whether to call this "force" is a matter of semantics. If you are falling freely under only the influence of gravity, you do not "feel" it, unless the curvature is so strong as to produce tidal stresses in your body. Therefore many people do say that "gravity is not a force."
 
  • Like
Likes afcsimoes
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top