Transformer Dilemma: Solve the Mystery

  • Thread starter Thread starter dolle39
  • Start date Start date
  • Tags Tags
    Transformer
AI Thread Summary
The discussion revolves around the principles of transformers, specifically a step-up transformer with a primary and secondary winding. When the voltage increases in the secondary winding due to a turns ratio greater than one, the current decreases to maintain power balance, as expressed by P = I*V. This decrease in current suggests an increase in resistance, which is attributed to the impedance of the secondary winding rather than an actual physical resistance. The relationship between voltage, current, and resistance is clarified through an example illustrating how power remains constant despite changes in these parameters. The conversation highlights the fundamental concepts of electrical impedance and the behavior of transformers in AC circuits.
dolle39
Messages
4
Reaction score
0
Hi,

I have a dilemma about transformers that I want to discuss. Say that I have connected an AC source to a step-up transformer with Np turns in the primary winding and Ns in the secondary winding. Say that the secondary winding is connected to a resistance R.

We know that the voltage in the secondary winding will be (Vp * Ns/Np) and if Ns>Np the voltage will increase. But as I understand this voltage increase must come at a cost of a decrease of current in the secondary winding in order to have P = I*V be the same on both sides of the transformer.

But we also know that I = V/R and thus if the voltage did increase in the secondary winding and the current did decrease, this must mean that the resistance increased in the secondary winding. But where does this resistance come from? Is it some sort of imaginary resistance?
I mean in my world an increase in voltage should mean an increase in current.

I think that I am making some fundamental mistake so please help me sort it out.
 
Physics news on Phys.org
I believe the impedance of the secondary inductor is where the resistance comes from. More turns = more inductance = more impedance since you have more self induction generating more counter EMF in your secondary.
 
These are ratios (secondary to primary).

Voltage on secondary increases relative to primary.
Current on secondary decreases relative to primary.
Resistance on secondary increases (as you said) relative to primary.

Example: 2:1 stepup ratio, 1Vac input, 1ohm secondary load.

Voltage at secondary = 2Vac (per turns ratio)
Current at secondary = 2amps (ohms law)

Load seen by source = 0.25 ohms (turns ratio squared)
current at source = 4 amps (ohms law)

Power at source = 4 watts
Power at load = 4 watts.

Note:
Voltage has gone up from 1V to 2V.
Current has gone down from 4A to 2A.
Resistance has gone up from 0.25 ohms to 1 ohm
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Back
Top