Relaxation times/frequencies of Polarization Mechanisms

  • Thread starter Thread starter citw
  • Start date Start date
  • Tags Tags
    Polarization
citw
Messages
70
Reaction score
0
Why do polarization mechanisms decrease with frequency in the following order:

Space charge/Interface

Dipole

Ionic

Electronic

See page 3 in the attached document for reference.

Edit: corrected error in wording
 

Attachments

Last edited:
Physics news on Phys.org
I would rather say they decrease in that order!
In general the maximal frequency depends on the inertia of the degrees of freedom. It is clear that an ion can't move as fast as an electron as it is heavier.
A more elaborate argument goes like this: The degrees of freedom have characteristic frequencies at which absorption takes place. For ordinary conduction/ space charges this frequency is zero (Drude), for dipole orientation there is a range of frequencies up to the microwave and finally ionic and electronic transitions occur in the IR and UV part of the spectrum.
Now the real part of the dielectric constant can be obtained from this absorptive part by a Kramers Kronig transformation.
 
DrDu said:
I would rather say they decrease in that order!
In general the maximal frequency depends on the inertia of the degrees of freedom. It is clear that an ion can't move as fast as an electron as it is heavier.
A more elaborate argument goes like this: The degrees of freedom have characteristic frequencies at which absorption takes place. For ordinary conduction/ space charges this frequency is zero (Drude), for dipole orientation there is a range of frequencies up to the microwave and finally ionic and electronic transitions occur in the IR and UV part of the spectrum.
Now the real part of the dielectric constant can be obtained from this absorptive part by a Kramers Kronig transformation.

The lower frequency of interface and dipole polarization, in that order, relative to ionic polarization is what I'm having trouble with. I'm not sure why interfacial polarization occurs at the lowest frequency or why dipole/orientation polarization occurs at a higher frequency than interfacial, but a lower frequency than ionic.
 
Interface polarization is due largely to classical currents of charge which are described by the Drude formula, i.e. a resonance at zero frequency. Dipole orientation is rotational motion of the dipoles which has resonance poles in the microwave/ far IR. "Ionic" polarization refers to the polarization due to optical phonons whose resonance frequency is in the IR.
 
DrDu said:
Interface polarization is due largely to classical currents of charge which are described by the Drude formula, i.e. a resonance at zero frequency. Dipole orientation is rotational motion of the dipoles which has resonance poles in the microwave/ far IR. "Ionic" polarization refers to the polarization due to optical phonons whose resonance frequency is in the IR.

Ok, I think I can figure out the dipole/ionic polarization from here, but I haven't seen anything relating Drude to interface polarization. Do you have any references describing this?
 
No, I have no reference. But as far as I understand, boundary polarization is an effect describable using ordinary macroscopic electrodynamics. So you can write down some equivalent RC networks etc whose characteristic frequencies are very low compared to the other effects mentioned.
Also the characteristic frequency of the conductivity which determines the R is 0, at least in Drude theory.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top