Question about Nick Herbert's Bell proof

  • Thread starter Thread starter bruce2g
  • Start date Start date
  • Tags Tags
    Bell Proof
Click For Summary
Nick Herbert's intuitive proof of Bell's theorem in "Quantum Reality" has raised questions regarding the interpretation of polarization correlation (PC) and statistical correlation. The confusion stems from Herbert's definition of PC as the fraction of matches, which ranges from 0 to 1, while statistical correlation typically ranges from -1 to 1. At 90 degrees calcite difference, the matches are zero, indicating perfect anti-correlation, which contrasts with the expected 50-50 chance of matches at zero correlation. The discussion highlights the distinction between the terms used in quantum mechanics and traditional statistics, emphasizing that QM predictions are based on a match probability from 0 to 1. Overall, the thread clarifies the nuances in terminology and confirms the validity of Herbert's proof despite initial misunderstandings.
bruce2g
Messages
86
Reaction score
0
I've just finished reading Nick Herbert's book 'Quantum Reality,' and I was a bit puzzled by his intuitive proof of Bell's theorem.

The part that puzzles me is the graphs on pp. 223 and 224, Fig 12.4 and 12.5. These show the 'matches per four marks' as a function of 'calcite difference.' They say that when the calcite difference is 90 degrees, the matches are zero.

It seems to me that when the calcite difference is 90 degrees, the correlation is zero, but then the matches should be 2 out of 4, since there's a 50-50 chance of a match when the correlation is zero. It seems to me that the calcite difference would need to be 180 degrees to achieve 0 matches.

Am I missing something, or did Herbert confuse 'correlation = zero' with 'matches = zero?'

Bruce
 
Physics news on Phys.org
Herbert has it right. At 0 degrees the system exhibits perfect correlation (= 1); at 90 degrees, perfect anti-correlation (= -1). No randomness at all at those angles.
 
Doc Al said:
Herbert has it right. At 0 degrees the system exhibits perfect correlation (= 1); at 90 degrees, perfect anti-correlation (= -1). No randomness at all at those angles.

Thanks. The problem stems from the fact that Herbert defines PC (polarization correlation) as "the fraction of matches" between the two calcites (p. 217). So actually, PC is a probablility between zero and 1, and it's not a statistical correlation (-1 to 1).

Since I have a statistics background, I got a little confused when he said (again on p. 217) "At zero degrees, PC = 1; at ninety degrees, PC = 0." As you noted, the actual (statistical) correlation at 90 degrees is -1.

My guess is that someone like Aspect or Bell started calling the coincidence count rate a "correlation" several decades ago, and it stuck; so the word "correlation" when used in the phrase "polarization correlation" has a different quantitative meaning than it has in normal statistics.

Just for the record, if 'r' is the statistical correlation and 'p' is the probability of a match (the 'polarization correlation'),
r = E(XY) = (1)p + (-1)(1-p) = 2p - 1, and
p = (r+1)/2
(based on the fact that XY = 1 when they match and -1 when they don't).

Other than this little confusion, Herbert's compact proof of Bell's theorem is terrific!
 
bruce2g said:
Since I have a statistics background, I got a little confused when he said (again on p. 217) "At zero degrees, PC = 1; at ninety degrees, PC = 0." As you noted, the actual (statistical) correlation at 90 degrees is -1.

You are exactly correct. The statistical view is different than how "correlation" is used with Bell tests. There are some places where it is actually presented as you describe (-1 to 1), but the majority have the range going from 0 to 1. That is because the results then nicely match the cos^2 theta function that is the driver for the quantum mechanical predictions.
 
DrChinese said:
There are some places where it is actually presented as you describe (-1 to 1), but the majority have the range going from 0 to 1. That is because the results then nicely match the cos^2 theta function that is the driver for the quantum mechanical predictions.
I have a question. Is not the range [-1 to 0.0 to + 1] completely different than [0 to +1] ? If so, which is the correct range to use for QM predictions, or does it not matter ?
 
Rade said:
I have a question. Is not the range [-1 to 0.0 to + 1] completely different than [0 to +1] ? If so, which is the correct range to use for QM predictions, or does it not matter ?

The QM predictions are from 0 to 1. The prediction is for a match (++ or --) relative to the angle theta between the polarizers. The QM prediction is cos^2 theta.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 43 ·
2
Replies
43
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 114 ·
4
Replies
114
Views
19K
  • · Replies 95 ·
4
Replies
95
Views
9K
  • · Replies 49 ·
2
Replies
49
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 75 ·
3
Replies
75
Views
12K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 290 ·
10
Replies
290
Views
39K