Question about Nick Herbert's Bell proof

  • Thread starter Thread starter bruce2g
  • Start date Start date
  • Tags Tags
    Bell Proof
bruce2g
Messages
86
Reaction score
0
I've just finished reading Nick Herbert's book 'Quantum Reality,' and I was a bit puzzled by his intuitive proof of Bell's theorem.

The part that puzzles me is the graphs on pp. 223 and 224, Fig 12.4 and 12.5. These show the 'matches per four marks' as a function of 'calcite difference.' They say that when the calcite difference is 90 degrees, the matches are zero.

It seems to me that when the calcite difference is 90 degrees, the correlation is zero, but then the matches should be 2 out of 4, since there's a 50-50 chance of a match when the correlation is zero. It seems to me that the calcite difference would need to be 180 degrees to achieve 0 matches.

Am I missing something, or did Herbert confuse 'correlation = zero' with 'matches = zero?'

Bruce
 
Physics news on Phys.org
Herbert has it right. At 0 degrees the system exhibits perfect correlation (= 1); at 90 degrees, perfect anti-correlation (= -1). No randomness at all at those angles.
 
Doc Al said:
Herbert has it right. At 0 degrees the system exhibits perfect correlation (= 1); at 90 degrees, perfect anti-correlation (= -1). No randomness at all at those angles.

Thanks. The problem stems from the fact that Herbert defines PC (polarization correlation) as "the fraction of matches" between the two calcites (p. 217). So actually, PC is a probablility between zero and 1, and it's not a statistical correlation (-1 to 1).

Since I have a statistics background, I got a little confused when he said (again on p. 217) "At zero degrees, PC = 1; at ninety degrees, PC = 0." As you noted, the actual (statistical) correlation at 90 degrees is -1.

My guess is that someone like Aspect or Bell started calling the coincidence count rate a "correlation" several decades ago, and it stuck; so the word "correlation" when used in the phrase "polarization correlation" has a different quantitative meaning than it has in normal statistics.

Just for the record, if 'r' is the statistical correlation and 'p' is the probability of a match (the 'polarization correlation'),
r = E(XY) = (1)p + (-1)(1-p) = 2p - 1, and
p = (r+1)/2
(based on the fact that XY = 1 when they match and -1 when they don't).

Other than this little confusion, Herbert's compact proof of Bell's theorem is terrific!
 
bruce2g said:
Since I have a statistics background, I got a little confused when he said (again on p. 217) "At zero degrees, PC = 1; at ninety degrees, PC = 0." As you noted, the actual (statistical) correlation at 90 degrees is -1.

You are exactly correct. The statistical view is different than how "correlation" is used with Bell tests. There are some places where it is actually presented as you describe (-1 to 1), but the majority have the range going from 0 to 1. That is because the results then nicely match the cos^2 theta function that is the driver for the quantum mechanical predictions.
 
DrChinese said:
There are some places where it is actually presented as you describe (-1 to 1), but the majority have the range going from 0 to 1. That is because the results then nicely match the cos^2 theta function that is the driver for the quantum mechanical predictions.
I have a question. Is not the range [-1 to 0.0 to + 1] completely different than [0 to +1] ? If so, which is the correct range to use for QM predictions, or does it not matter ?
 
Rade said:
I have a question. Is not the range [-1 to 0.0 to + 1] completely different than [0 to +1] ? If so, which is the correct range to use for QM predictions, or does it not matter ?

The QM predictions are from 0 to 1. The prediction is for a match (++ or --) relative to the angle theta between the polarizers. The QM prediction is cos^2 theta.
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Back
Top