Operators on hilbert space Definition and 28 Threads
-
I Example of complete set of operators
I have a question about an example about the choice of the operators needed to describe a system, the text is reported below: "3D systems with ##H = (p_1^2+ p_2^2+ p_3^2)/(2m)## but no potential. Classically, the number of degrees of freedom is 6 corresponding to the six canonical variables xi...- alebruna
- Thread
- Basis vectors Example Free particle Operators on hilbert space Quantum phyics
- Replies: 11
- Forum: Quantum Interpretations and Foundations
-
I Position operator explicit form
I've a doubt about the following definition from PSE thread. The first answer says that the position representation of the position operator ##\hat{x}## is: $$\bra{x}\hat{x} = \bra{x}x$$ I believe there is a typo, it should actually be $$\bra{x}\hat{x} = x \bra{x}$$ Does it make sense ? Thanks.- cianfa72
- Thread
- Eigenstates Eigenvalues Hilbert space Operators on hilbert space Position operator
- Replies: 9
- Forum: Quantum Physics
-
I Why do ##t## and ##-i\hbar\partial_t## not satisfy the definition of a linear map/operator in Hilbert space?
It is common to say that ##t## and ##-i\hbar\partial_t## are not operators in quantum mechanics. But I haven't seen a satisfying justification. As an example of the precision of our discourse, someone has said that ##-i\hbar\partial_t## satisfies the definition of Hermicity, but it is not an...- Dr_Nate
- Thread
- Hermitian Linear map Operators on hilbert space Quantum mechanics Time
- Replies: 4
- Forum: Quantum Physics
-
I Motivation behind the Operator-Formalism in QM
I have a problem understanding the motivation behind why all observables are represented via a hermitian operator. I understand that from the eigenvalue equation $$ \hat A\ket{\psi} = A_i\ket{\psi}$$ after requiring that the eigenvalues be real, the operator ##\hat A## needs to be hermitian...- deuteron
- Thread
- Operators on hilbert space Quantum mechahnics
- Replies: 3
- Forum: Quantum Physics
-
I How to "derive" momentum operator in position basis using STE?
I am not able to use Latex for some reason. It is very glitchy and if I do one backspace then it fills my whole screen with multiple copies of the same equation. Thus I am pasting a screenshot of handwritten equations instead. Apologies for any inconvenience. In Introduction to Quantum...- LightPhoton
- Thread
- Expectation values Momentum Operators on hilbert space Quantum mechanics
- Replies: 3
- Forum: Quantum Physics
-
M
Homework Help: Quantum Information Theory 1
I considered an operator ##X \in \mathcal{L}(\mathcal{X} \otimes \mathcal{K})##, that is positive, ##X \geq 0##. And I defined it as it follows: ##X = \sum_{i,j} a_{ij} ∣x_i \rangle \langle x_i ∣ \otimes ∣k_j \rangle \langle k_j∣ ## Where ##x_i## are basis for ##\mathcal{X}## and ##k_j## basis...- maomao
- Thread
- Hilbert spaces Operators on hilbert space Quantum information
- Replies: 0
- Forum: Advanced Physics Homework Help
-
I Qbit pure vs mixed state space
According to this Wikipedia entry a quantum pure qbit state is a ray in the Hilbert space ##\mathbb H_2## of dimension 2. In other words a qbit pure quantum state is a point in the Hilbert projective line. Now my question: is an arbitrary vector in ##\mathbb H_2## actually a "mixed" state for...- cianfa72
- Thread
- Hilbert space Mixed state Operators on hilbert space Pure state Qubit
- Replies: 35
- Forum: Quantum Physics
-
I Representation of Spin 1/2 quantum state
Hi, I'm aware of the wave function ##\Psi## of a quantum system represents basically the "continuous components" of a quantum state (a point/vector in the infinite-dimension Hilbert space) in a basis. If we take the ##\delta(x - \bar x)## eigenfunctions as basis on Hilbert space then the wave...- cianfa72
- Thread
- Hilbert space Operators on hilbert space Spin Spin operator Wave function
- Replies: 61
- Forum: Quantum Physics
-
A Expectation value in Heisenberg picture: creation and annihilation
So, I have a hamiltonian for screening effect, written like: $$ H=\sum_{k}^{}\epsilon_{k}c_{k}^{\dagger}c_{k}+ \frac{1}{\Omega}\sum_{k,q}^{}V(q,t)c_{k+q}^{\dagger}c_{k} $$ And I have to find an equation for the time evolution of the expected value of the operator ##c_{k-Q}^{\dagger}c_{k}##. I...- Bruno Cardin
- Thread
- Annihilation Creation Expectation Expectation value Expected value Heisenberg heisenberg picture Operators on hilbert space Picture Value
- Replies: 1
- Forum: Quantum Physics
-
&
I Vacuum projection operator and normal ordering
I've been reading this book, in which the author expresses the vacuum projection operator ##\vert 0\rangle\langle 0\vert## in terms of the number operator ##\hat{N}=\hat{a}^{\dagger}\hat{a}##, where ##\hat{a}^{\dagger}## and ##\hat{a}## are the usual creation and annihilation operators...- "Don't panic!"
- Thread
- Ladder operators Normal Operator Operators on hilbert space Projection Quantum mechanics Vacuum
- Replies: 19
- Forum: Quantum Physics
-
J
Self adjoint operators in spherical polar coordinates
Hi, I have a general question. How do I show that an operator expressed in spherical coordinates is self adjoint ? e.g. suppose i have the operator i ∂/∂ϕ. If the operator was a function of x I know exactly what to do, just check <ψ|Qψ>=<Qψ|ψ> But what about dr, dphi and d theta- JALAJ CHATURVEDI
- Thread
- Coordinates Operators Operators on hilbert space Polar Polar coordinates Self Spherical Spherical coordinates
- Replies: 1
- Forum: Advanced Physics Homework Help
-
Finding Eigenvalues of an Operator with Infinite Basis
I just began graduate school and was struggling a bit with some basic notions, so if you could give me some suggestions or point me in the right direction, I would really appreciate it. 1. Homework Statement Given an infinite base of orthonormal states in the Hilbert space...- CharlieCW
- Thread
- Eigenvalues Operator Operators on hilbert space Quantum-mechanics Sum
- Replies: 1
- Forum: Advanced Physics Homework Help
-
B
I Can we construct a Lie algebra from the squares of SU(1,1)
I am trying to decompose some exponential operators in quantum optics. The interesting thing is that the operators includes operators from Su(1,1) algebra $$ [K_+,K_-]=-2K_z \quad,\quad [K_z,K_\pm]=\pm K_\pm.$$ For example this one: $$ (K_++K_-)^2.$$ But as you can see they are squares of it. I...- Buddha_the_Scientist
- Thread
- Algebra Lie algebra Operators on hilbert space Squares
- Replies: 6
- Forum: Linear and Abstract Algebra
-
C
I Question about inverse operators differential operators
Hi all, so I'm not sure if what I'm asking is trivial or interesting, but is there any general or canonical way to interpret say, The follwing operator? (Specifically in the study of quantum mechanics): A = 1/(d/dx) (I do not mean d-1/dx-1, which is the antiderivative operator ) How would...- cmcraes
- Thread
- Differential Inverse Operators Operators on hilbert space Quantum mechanics
- Replies: 4
- Forum: Linear and Abstract Algebra
-
A
A Transformation of position operator under rotations
In the momentum representation, the position operator acts on the wavefunction as 1) ##X_i = i\frac{\partial}{\partial p_i}## Now we want under rotations $U(R)$ the position operator to transform as ##U(R)^{-1}\mathbf{X}U(R) = R\mathbf{X}## How does one show that the position operator as...- Anj123
- Thread
- Operator Operators on hilbert space Position Position operator Quantum mechanics Rotations Transformation
- Replies: 1
- Forum: Quantum Physics
-
S
A Operators in Quantum Mechanics
Hey guys, Am facing an issue, we know that x and y operators take the same form due to isotropy of space, but sir if we destroy the isotropy, then what form will it take? Can u pleases throw some light on this! Thanks in advance- Sheldon Cooper
- Thread
- In quantum mechanics Mechanics Operators Operators on hilbert space Quantum Quantum mechanics
- Replies: 7
- Forum: Quantum Physics
-
N
I Symmetric, self-adjoint operators and the spectral theorem
Hi Guys, at the moment I got a bit confused about the notation in some QM textbooks. Some say the operators should be symmetric, some say they should be self-adjoint (or in many cases hermitian what maybe means symmetric or maybe self-adjoint). Which condition do we need for our observables...- Neutrinos02
- Thread
- Hermitian Operator Operators Operators on hilbert space Quantum mechahnics Symmetric Theorem
- Replies: 5
- Forum: Quantum Physics
-
Q
I Interpret Heisenberg Picture: Operators & States
Can anybody give a natural interpretation of operators and states in the Heisenberg Picture? When I imagine particles flying through space, it seems that the properties of the particles are changing, rather than the position property itself. Is there any way I should be thinking about these...- quickAndLucky
- Thread
- Heisenberg heisenberg picture Operators on hilbert space Picture States Time evolution
- Replies: 3
- Forum: Quantum Physics
-
F
I Inner products and adjoint operators
I'm trying to prove the following relation $$\langle\psi\lvert \hat{A}^{\dagger}\rvert\phi\rangle =\langle\phi\lvert \hat{A}\rvert\psi\rangle^{\ast}$$ where ##\lvert\phi\rangle## and ##\lvert\phi\rangle## are state vectors and ##\hat{A}^{\dagger}## is the adjoint of some operator ##\hat{A}##...- Frank Castle
- Thread
- Inner product Operators Operators on hilbert space Quantum mechanics
- Replies: 8
- Forum: Quantum Physics
-
&
Instantaneous eigenstates in the Heisenberg picture
I'm a bit confused as to what is meant by instantaneous eigenstates in the Heisenberg picture. Does it simply mean that if vectors in the corresponding Hilbert space are eigenstates of some operator, then they won't necessarily be so for all times ##t##, the eigenstates of the operator will...- "Don't panic!"
- Thread
- Eigenstates Heisenberg heisenberg picture Operators on hilbert space Picture Quantum-mechanics
- Replies: 9
- Forum: Quantum Physics
-
J
What Boundary Conditions Are Needed for Time-Dependent Hermitian Operators?
Hello, could you please give me an insight on how to get through this proof involving operators? Proof: Given an eigenvalue-eigenvector equation, suppose that the vectorstate depends on an external parameter, e.g. time, and that over it acts an operator that is the fourth derivative w.r.t...- Je m'appelle
- Thread
- Hilbert space Linear algebra Mathematical physics Operator Operators on hilbert space Proof Properties Quantum mechanics
- Replies: 2
- Forum: Advanced Physics Homework Help
-
W
Finding Possible Measurement Results of an Observable
Homework Statement I am trying to find the possible measurement results if a measurement of a given observable ##Q=I-\left|u\right\rangle\left\langle u\right|## is made on a system described by the density operator ##\rho={1 \over 4}\left|u\right\rangle\left\langle u\right|+{3 \over...- wgrenard
- Thread
- Measurement Observable Operators on hilbert space Quantum mechanics
- Replies: 1
- Forum: Advanced Physics Homework Help
-
J
Which is the space of mappings from L^2 to itself?
Hi there, I was wondering, which is the space of (not necessarily linear) mappings from ##L^2## to itself? If you have an element ##f(x) \in L^2##, then a nonlinear mapping could be ##g(\cdot)##. Then if ##g## is bounded the image is in ##L^2##, does that mean that the space of linear and...- jorgdv
- Thread
- Functional analysis Operators on hilbert space Space
- Replies: 2
- Forum: Linear and Abstract Algebra
-
T
Hamiltonian of two identical spin-1/2 particles
Homework Statement Two identical spin-1/2 particles of mass m moving in one dimension have the Hamiltonian $$H=\frac{p_1^2}{2m} + \frac{p_2^2}{2m} + \frac{\lambda}{m}\delta(\mathbf r_1-\mathbf r_2)\mathbf s_1\cdot\mathbf s_2,$$ where (pi, ri, si) are the momentum, position, and spin operators...- thecommexokid
- Thread
- Hamiltonian Operators on hilbert space Particles Quantum mechanics Spin
- Replies: 8
- Forum: Advanced Physics Homework Help
-
2
Question about creation and annihilation operators?
Hello! I am reading about the creation and annihilation operators and I don't get how you find the creation operator from the annihilation one. The creation one is \hat{a}=\sqrt{\frac{m \omega}{2 \hbar}}\left( \hat{x}+\frac{i \hat{p}}{m \omega}\right) and the annihilation operator is...- 21joanna12
- Thread
- Annihilation Creation Energy Energy levels Operators Operators on hilbert space Quantum mechaincs
- Replies: 6
- Forum: Quantum Physics
-
2
Trouble with Hermitian operators?
I am looking at the derivation of the Heisenberg Uncertainty Principle presented here: http://socrates.berkeley.edu/~jemoore/p137a/uncertaintynotes.pdf and am confused about line (21)... I do not understand why AB and BA are complex conjugates of each other... (I'm still in high school so I...- 21joanna12
- Thread
- Heisenberg Hermitian Operators Operators on hilbert space Quantum mechaincs Uncertainty principle
- Replies: 1
- Forum: Quantum Physics
-
C
The simplest derivation of position operator for momentum space
Might be simple but I couldn't see. We can easily derive momentum operator for position space by differentiating the plane wave solution. Analogously I want to derive the position operator for momentum space, however I am getting additional minus sign. By replacing $$k=\frac{p}{\hbar}$$ and...- cryptist
- Thread
- Derivation Momentum Momentum space Operator Operators on hilbert space Position Position operator Space
- Replies: 6
- Forum: Quantum Physics
-
L
Operators on infinite-dimensional Hilbert space
Hello all! I have the following question with regards to quantum mechanics. If ##H## is a Hilbert space with a countably-infinite orthonormal basis ##\{ \left | n \right \rangle \}_{n \ \in \ \mathbb{N} }##, and two operators ##R## and ##L## on ##H## are defined by their action on the basis...- linbrits
- Thread
- Hilbert Hilbert space Operators Operators on hilbert space Space
- Replies: 3
- Forum: Quantum Physics