I 1-loop Fermion mass correction in toy EFT

Siupa
Messages
30
Reaction score
5
Where does the ##m## in ##(3.2)## come from? It doesn’t seem to enter anywhere in Feynman rules for the given diagram
 

Attachments

  • CFA0CBB4-F90D-4C1F-8EDA-086811ED154A.jpeg
    CFA0CBB4-F90D-4C1F-8EDA-086811ED154A.jpeg
    31.4 KB · Views: 129
Physics news on Phys.org
Source?

Anyway, it comes from the internal fermion propagator - you can not just look at the interaction Feynman rules.
 
Last edited:
malawi_glenn said:
Source?

Anyway, it comes from the internal fermion propagator - you can not just look at the interaction Feynman rules.
Source is A. Pich, Effective Field Theory, beginning of chapter 3.

I understand that the momentum integral of the internal propagator comes from that loop, but why specifically is there a factor of ##m## in front of it? Or better, why isn‘t it inside the integral in the numerator summed with ##\not\! k##? Is it because the integral with ##k## in the numerator vanishes due to the integrand being odd? Isn’t this argument only valid for convergent integrals though?
 
in the numerator you have ##\not\! k - m ## in the fermion propagator.

Yes, it will vanish because of odd integrand see https://arxiv.org/abs/2006.16285 eq. 18 page 14
(note the typo, it should read ##(\gamma^5)^2 = 1##)

Look at it this way. How would you get something that has the dimension of mass, in that diagram, unless you had a factor ##m## in front? Can you come up with anything?
 
Last edited:
  • Like
Likes vanhees71 and Siupa
malawi_glenn said:
in the numerator you have ##\not\! k - m ## in the fermion propagator.

Yes, it will vanish because of odd integrand see https://arxiv.org/abs/2006.16285 eq. 18 page 14
(note the typo, it should read ##(\gamma^5)^2 = 1##)

Look at it this way. How would you get something that has the dimension of mass, in that diagram, unless you had a factor ##m## in front? Can you come up with anything?
I understand, thank you!
 
  • Like
Likes malawi_glenn
Seems to be a textbook making the "confusing issue" of divergencies even more confusing. Of course your integral must be regularized first, before you can make any sense of it. The most convenient, but a bit unintuitive, regularization is "dimensional regularization" since it keeps Poincare invariance, and then indeed it's correct to conclude that the part of the integrand ##\gamma_{\mu} k^{\mu}## can be set to 0.
 
  • Love
Likes malawi_glenn
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top