I 1-loop Fermion mass correction in toy EFT

Click For Summary
The discussion focuses on the origin of the mass term in the context of a one-loop fermion mass correction in effective field theory (EFT). It clarifies that the mass factor arises from the internal fermion propagator rather than the interaction Feynman rules. A key point is that the integral involving the momentum variable vanishes due to the odd nature of the integrand, which is valid under dimensional regularization. Participants emphasize the necessity of regularizing the integral to properly interpret the results. The conversation highlights the complexities of divergences in quantum field theory and the importance of maintaining Poincaré invariance in calculations.
Siupa
Messages
30
Reaction score
5
Where does the ##m## in ##(3.2)## come from? It doesn’t seem to enter anywhere in Feynman rules for the given diagram
 

Attachments

  • CFA0CBB4-F90D-4C1F-8EDA-086811ED154A.jpeg
    CFA0CBB4-F90D-4C1F-8EDA-086811ED154A.jpeg
    31.4 KB · Views: 142
Physics news on Phys.org
Source?

Anyway, it comes from the internal fermion propagator - you can not just look at the interaction Feynman rules.
 
Last edited:
malawi_glenn said:
Source?

Anyway, it comes from the internal fermion propagator - you can not just look at the interaction Feynman rules.
Source is A. Pich, Effective Field Theory, beginning of chapter 3.

I understand that the momentum integral of the internal propagator comes from that loop, but why specifically is there a factor of ##m## in front of it? Or better, why isn‘t it inside the integral in the numerator summed with ##\not\! k##? Is it because the integral with ##k## in the numerator vanishes due to the integrand being odd? Isn’t this argument only valid for convergent integrals though?
 
in the numerator you have ##\not\! k - m ## in the fermion propagator.

Yes, it will vanish because of odd integrand see https://arxiv.org/abs/2006.16285 eq. 18 page 14
(note the typo, it should read ##(\gamma^5)^2 = 1##)

Look at it this way. How would you get something that has the dimension of mass, in that diagram, unless you had a factor ##m## in front? Can you come up with anything?
 
Last edited:
  • Like
Likes vanhees71 and Siupa
malawi_glenn said:
in the numerator you have ##\not\! k - m ## in the fermion propagator.

Yes, it will vanish because of odd integrand see https://arxiv.org/abs/2006.16285 eq. 18 page 14
(note the typo, it should read ##(\gamma^5)^2 = 1##)

Look at it this way. How would you get something that has the dimension of mass, in that diagram, unless you had a factor ##m## in front? Can you come up with anything?
I understand, thank you!
 
  • Like
Likes malawi_glenn
Seems to be a textbook making the "confusing issue" of divergencies even more confusing. Of course your integral must be regularized first, before you can make any sense of it. The most convenient, but a bit unintuitive, regularization is "dimensional regularization" since it keeps Poincare invariance, and then indeed it's correct to conclude that the part of the integrand ##\gamma_{\mu} k^{\mu}## can be set to 0.
 
  • Love
Likes malawi_glenn
Hi everyone, I am doing a final project on the title " fundamentals of neutrino physics". I wanted to raise some issues with neutrino which makes it the possible way to the physics beyond standard model. I am myself doing some research on these topics but at some points the math bugs me out. Anyway, i have some questions which answers themselves confounded me due to the complicated math. Some pf them are: 1. Why wouldn't there be a mirror image of a neutrino? Is it because they are...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 13 ·
Replies
13
Views
4K
Replies
1
Views
2K