I 10^(1/10) is VERY close to 2^(1/3)

Juanda
Gold Member
Messages
439
Reaction score
144
Is there a subjacent reason that explains why these two numbers are so close?
$$10^{1/10} \approx 2^{1/3}$$

For context, this is where I found out about this.
Source: https://www.instarengineering.com/p...ration_Testing_of_Small_Satellites_Part_5.pdf
1708777676533.png


Is it just a coincidence? I tried factoring the numbers but it doesn't provide any additional information. From the infinite number of possibilities, how did they realize that ##10^{1/10} \approx 2^{1/3}## are so close together that it is acceptable to use the ##2^{1/3}## without losing too much accuracy?
 
Mathematics news on Phys.org
##2^{10}=1024, \sqrt[3] {1024} \approx 10##
 
  • Like
  • Informative
Likes DrClaude, berkeman, FactChecker and 3 others
How did I not see it? 🤦‍♂️
Thank you. It's clear now.
 
Juanda said:
Is it just a coincidence?
Pretty much -- ##10^{1/10}## is not all that close to ##2^{1/3}##.
The first is ~1.2599, and the second is ~1.2589. Rounding to 3 decimal places gives 1.260 vs. 1.259. I guess these are close if you consider ##\sqrt 2 \approx 1.4## as they did in the quoted article.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top