MHB 16.1 Show that e^{2x}, sin(2x) is linearly independent on + infinity -infinity

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
16.1 Show that $e^{2x}$, sin(2x) are linearly independent on $(-\infty,+\infty)$

https://www.physicsforums.com/attachments/9064
that was the example but...

\begin{align*}
w(e^x,\cos x)&=\left|\begin{array}{rr}e^x&\cos{x} \\ e^x&-\cos{x} \\ \end{array}\right|\\
&=??\\
&=??
\end{align*}
 
Physics news on Phys.org
$$=e^x(-\cos(x)-\cos(x))=-2e^x\cos(x)\dots$$

But don't you need to calculate $w\left(e^{2x},\cos(2x)\right)?$ What do you get for that?
 
karush said:
but...

\begin{align*}
w(e^x,\cos x)&=\left|\begin{array}{rr}e^x&\cos{x} \\ e^x&-\cos{x} \\ \end{array}\right|\\
&=??\\
&=??
\end{align*}

$$w(e^x,\cos{x}) = \begin{vmatrix}
e^x & \cos{x}\\
e^x & -\sin{x}
\end{vmatrix} = -e^x(\sin{x}+\cos{x})$$
 
Sorry everybody I think this thread went off the rails
my 2nd post was way off
so Ill post another new one of a similar problem


 
Last edited:
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads