MHB 16.1 Show that e^{2x}, sin(2x) is linearly independent on + infinity -infinity

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
16.1 Show that $e^{2x}$, sin(2x) are linearly independent on $(-\infty,+\infty)$

https://www.physicsforums.com/attachments/9064
that was the example but...

\begin{align*}
w(e^x,\cos x)&=\left|\begin{array}{rr}e^x&\cos{x} \\ e^x&-\cos{x} \\ \end{array}\right|\\
&=??\\
&=??
\end{align*}
 
Physics news on Phys.org
$$=e^x(-\cos(x)-\cos(x))=-2e^x\cos(x)\dots$$

But don't you need to calculate $w\left(e^{2x},\cos(2x)\right)?$ What do you get for that?
 
karush said:
but...

\begin{align*}
w(e^x,\cos x)&=\left|\begin{array}{rr}e^x&\cos{x} \\ e^x&-\cos{x} \\ \end{array}\right|\\
&=??\\
&=??
\end{align*}

$$w(e^x,\cos{x}) = \begin{vmatrix}
e^x & \cos{x}\\
e^x & -\sin{x}
\end{vmatrix} = -e^x(\sin{x}+\cos{x})$$
 
Sorry everybody I think this thread went off the rails
my 2nd post was way off
so Ill post another new one of a similar problem


 
Last edited:
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K