Hi all,(adsbygoogle = window.adsbygoogle || []).push({});

I'm wanting to write a small program simulating a 1D lattice with some motion. I have the equation:

[tex]m_{n}\frac{d^{2}u_{n}}{dt^{2}}= k_{n,n+1}(u_{n+1}-u_{n})+k_{n-1,n}(u_{n-1}-u_{n})[/tex]

Then using a simple trial plane wave ([tex]u_{n}=Ae^{-i\omega t}[/tex]). It boils down to:

[tex]- \omega^{2} m_{n}u_{n}= k_{n,n+1}(u_{n+1}-u_{n})+k_{n-1,n}(u_{n-1}-u_{n})[/tex]

This is the point that I'm really stuck at, I don't really know how to initialize the problem, without loosing generality. Looking at most textbooks like Hook & Hall, they only solve problems of this type with some kind of repeated lattice where either all masses are the same or at most they alternate between two types of mass. Although in most cases they find the dispersion relation (which I'm not actually interested in).

I want the simulation as general as possible as I want to introduce random mass/spring constant disorder and see how this effects the amplitudes of the masses along the chain. Could someone give me some hints on how to start, as obviously nothing will happen if the masses are at equilibrium at the start of the simulation.

Sorry if this appears very vague,

Thanks,

Seb

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# 1D chain with loads of disorder

**Physics Forums | Science Articles, Homework Help, Discussion**