1D Heat Transfer Analytical Wall

Click For Summary
SUMMARY

The forum discussion focuses on solving a transient heat transfer problem in a steel wall using analytical methods. Key parameters include a wall thickness of 5 mm, initial temperature of 20°C, and ambient temperature of 100°C. The user employed Python's SciPy library for root-finding with the function fsolve, but encountered unexpected results when increasing time, leading to a temperature drop in the unexposed wall. An alternative approach using a lumped parameter model was suggested, yielding a temperature of approximately 46°C at 360 seconds.

PREREQUISITES
  • Understanding of transient heat transfer principles
  • Familiarity with Python programming and SciPy library
  • Knowledge of lumped parameter analysis in thermal systems
  • Basic concepts of thermal conductivity and heat transfer coefficients
NEXT STEPS
  • Study the derivation and application of the lumped capacitance method in heat transfer
  • Learn about the Biot number and its significance in heat transfer analysis
  • Explore advanced numerical methods for solving transient heat transfer problems
  • Investigate the use of finite element analysis (FEA) for thermal simulations
USEFUL FOR

Engineers, thermal analysts, and students studying heat transfer who are looking to deepen their understanding of transient thermal analysis and computational methods.

kartini99
Messages
1
Reaction score
0
TL;DR
Problem finding the correct temperature value for unexposed heat by using separation variables.
Hello everyone,

I'm trying to solve the transient heat transfer problem within the ID wall.
The material is steel, and it is isotropic.
The properties are given below :
L = 5 mm
qin = 0
Tinf = 100 deg C
Tini = 20 deg C
rho = 7850 kg/m3
cp = 460 W/Kg.K
k = 45.8 W/m.K
h = 20 W/m^2.K
alpha = k / rho*cp
t = 360 second
Fo = alpha * t / (L**2)

By using the attached formulation, I got the root of the function lambda is 0.03303492.
However, I increased the time, and the temperature in the unexposed wall was reduced. and when I change the time to 1 (one), the value shows almost like the T imposed, which is 100. Kind of the opposite way, Kindly any body help me with that. I also attached the script below

Python:
from scipy.optimize import fsolve
import numpy as np

def xtanxmbi(x, Bi):
    # tan = np.tan(x*np.pi/180)
    # return np.arctan(tan)*Bi-x
    # return (1/np.tan(x))*Bi-x
    return (np.cos(x)/np.sin(x))*Bi-x

# W = 1
# H = 0.1
L = 2.5 / 1000
qin = 0
Tinf = 100
Tini = 20
rhocp = 7850 * 460
k = 45.8
h = 20
alpha = k / rhocp
t = 360
Fo = alpha * t / (L**2)
print(f"The Fo is = {Fo}")
N = 6
n = 6
Bi = h * L / k
theta = np.zeros((n, N))
x0 = np.arange(n) * np.pi + 0.3
ans = fsolve(xtanxmbi, x0=x0, args=(Bi), full_output=True)
if ans[2] != 1:
    print("error solving roots of transcendental equation")
roots = ans[0]
Bi5 = Bi
print(f"Bi = {Bi5} , {roots}")

for i in np.arange(n):
    An = 2* np.sin(roots[I]) / (roots[I]+np.sin(roots[I])*np.cos(roots[I]))
    print(f"An = {An}")
    x = 1
    theta[I] = An * np.exp((-roots[I] ** 2 )* Fo) * np.cos(roots[I] * x)
    print(f"value of theta = {theta}")
    print(type(theta))
# Cn_0 = 4.0 * np.sin(roots[0]) / (2.0 * roots[0] + np.sin(2.0 * roots[0]))
# print(f"value of Cn is ={Cn_0}")
# theta_0 = Cn_0 * np.exp(-roots[0] ** 2 * Fo) * np.cos(roots[0] * x)
# print(f"value of theta is ={theta_0}")
sum_theta = theta[0, 0]
# print(sum_theta)

T = Tini + (Tinf - Tini) * sum_theta
print(f"value T={T}")
[/I][/I][/I][/I][/I][/I][/I]
 

Attachments

  • Capture.JPG
    Capture.JPG
    52.7 KB · Views: 150
Last edited by a moderator:
Science news on Phys.org
Please provide a diagram.
 
The units of Cp are incorrect
 
As an engineer, my approach to this is entirely different, and I actually get a simple accurate answer. Looking at the time scale for flattening of the temperature within the wall ##L^2/\alpha##, I conclude that this time scale is only a few seconds, compared to the time scale for the thermal inertia of the wall to respond to the outside heat transfer ##\tau = \rho C_p L/h##, which is on the order of 900 sec. So it is valid to use an lumped parameter model for the slab, with the temperature profile within the slab treated as uniform. For this description, the temperature is a function only of time, given by $$T=100-(100-20)e^{-t/\tau}$$At 360 seconds, this gives a temperature of about 46 C.
 

Similar threads

Replies
1
Views
679
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
2K