MHB How Does Constant Acceleration Affect Car Speed Over Time?

AI Thread Summary
A car traveling at 45 km/h accelerates at a constant rate of 10 km/h per second. After 1 second, its speed increases to 55 km/h, and after 2 seconds, it reaches 60 km/h. The general formula for speed at any time t is given by v_t = v_0 + at, where the acceleration can be expressed in km/h per second. There is some debate about the units of acceleration, but using km/h per second is deemed acceptable for this context. The increase in speed can be calculated as 10t km/h for any duration t.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
2.3.16 A car is traveling at $45 \, km/h$ at time $t=0$ It accelerates at a constant rate of $10 \, km/h\, s$
(a) How fast is the care going at $t=1\, s$?
$$v_t=v_0+at=45+10(1)=55\,\dfrac{km}{h}$$
at $t=2\,s$
$$v_t=v_0+at=45+10(2)=45+20=60\,\dfrac{km}{h}$$
(b) What is its speed at a general time t

ok this is a very simple problem but when you have constant acceleration there is no power on s?
also (b) what is meant by general time t is that an average or an equation.also typos perhaps...
 
Mathematics news on Phys.org
karush said:
2.3.16 A car is traveling at $45 \, km/h$ at time $t=0$ It accelerates at a constant rate of $10 \, km/h\, s$
(a) How fast is the care going at $t=1\, s$?
$$v_t=v_0+at=45+10(1)=55\,\dfrac{km}{h}$$
at $t=2\,s$
$$v_t=v_0+at=45+10(2)=45+20=60\,\dfrac{km}{h}$$
(b) What is its speed at a general time t

ok this is a very simple problem but when you have constant acceleration there is no power on s?
also (b) what is meant by general time t is that an average or an equation.also typos perhaps...
First of all we need to fix that unit in the acceleration, which is a bit weird. Since a) is putting time in seconds, then let's get the acceleration to km/s^2:
[math]\dfrac{10 ~\text{km}}{\text{h s}} \cdot \dfrac{10 ~ \text{h}}{3600 ~ \text{s}} = 0.278 ~ \text{km/}s^2[/math]

Now use [math]v_0 + at[/math].

-Dan
 
I disagree with Dan. Since we want the speed, in km/h, after t seconds, an acceleration in "km/hs", kilometers per hour per second, is simple and perfectly reasonable.

Now, to the given question. (a) asked for the speed after 1 second at an acceleration of 10 km/hs. Yes, multiplying 10 km/hs
by 1 second
gives an increase of 10 km/h so the speed goes from 55 km/h to 65 km/h. I notice that you next give the speed after 2 seconds acceleration. That doesn't appear to have been asked but it was not a bad thing to do- you multiplied 10 km/hs by 2 seconds to get an increase of 20 km/h. What if, instead of "1 second" or "2 seconds" you were told the acceleration lasted for "t seconds". You would do exactly the same thing: multiply 10 km/hs by t seconds to get an increase in speed of 10t km/h.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top