2D Heat Conduction - MATLAB help

Click For Summary
The discussion focuses on a MATLAB implementation for solving a 2D heat conduction problem involving convection and insulation. The user has written extensive code but is not achieving accurate results, regardless of the constants used. A key issue identified is the incorrect handling of boundary conditions, particularly at node 16, where the equation setup needs adjustment. Additionally, there is a question about the rationale for the use of the forcing function vector (C-D) in the equations for nodes 1 to 5. The conversation emphasizes the need for code simplification and correct boundary condition representation to improve the solution accuracy.
abe_cooldude
Messages
14
Reaction score
0
Hi all, I am working on the problem below, and I wrote the code, but it's not working. Can anyone help me out? And even any ideas on how to improve the code to make it more succinct?

http://i25.tinypic.com/2v0zi8m.jpg
2v0zi8m.jpg


Basically, it is a 2D conduction problem with convection heat transfer on the top, insulated at the bottom edge, and temperature held constant at the left and right edge. The dimensions of the plate are 0.8x0.7 with dx=dy=dx=0.1. I used the symmetry, and the just worked on the left side of the symmetry line (nodes 1-40), wrote nodal equations (finite difference eqs) for each node, and then created a 40x40 matrix in MATLAB to solve system of unknown temperatures. However, my answer is not even remotely close. It doesn't matter what values I choose for k, h, Tb, q_dot, or any other constants. Here's my code. It's very long. I hope there's an easier way to implement this. IF there is, can someone help me or give me any ideas?

clc
clear

%Material Properties & Constants
k = 205;
h = 10;
qdot = 1000;
Tinf = 293.15;
Tb = 423.15;
dx = 0.1;
c = (-qdot*dx^2)/k;
d = 2*((h*dx)/k)*Tinf;
%Matrices
n = 5*8;
a = zeros(n,n);
b = zeros(n);

%node(1)
a(1,1)=-2*((h*dx)/k+1);
a(1,2)=1;
a(1,6)=1;
b(1)=c-d;

%node(2)
a(2,2)=-2*((h*dx)/k+2);
a(2,1)=1;
a(2,3)=1;
a(2,7)=2;
b(2)=c-d;

%node(3)
a(3,3)=-2*((h*dx)/k+2);
a(3,2)=1;
a(3,4)=1;
a(3,8)=2;
b(3)=c-d;

%node(4)
a(4,4)=-2*((h*dx)/k+2);
a(4,3)=1;
a(4,5)=1;
a(4,9)=2;
b(4)=c-d;

%node(5)
a(5,5)=-2*((h*dx)/k+2);
a(5,4)=2;
a(5,10)=2;
b(5)=c-d;

%node(6)
a(6,6)=Tb;
b(6)=0;

%node(7)
a(7,7)=-4;
a(7,2)=1;
a(7,6)=1;
a(7,8)=1;
a(7,12)=1;
b(7)=c;

%node(8)
a(8,8)=-4;
a(8,3)=1;
a(8,7)=1;
a(8,9)=1;
a(8,13)=1;
b(8)=c;

%node(9)
a(9,9)=-4;
a(9,4)=1;
a(9,8)=1;
a(9,10)=1;
a(9,14)=1;
b(9)=c;

%node(10)
a(10,10)=-4;
a(10,5)=1;
a(10,9)=2;
a(10,15)=1;
b(10)=c;

%node(11)
a(11,11)=Tb;
b(11)=0;

%node(12)
a(12,12)=-4;
a(12,7)=1;
a(12,11)=1;
a(12,13)=1;
a(12,17)=1;
b(12)=c;

%node(13)
a(13,13)=-4;
a(13,8)=1;
a(13,12)=1;
a(13,14)=1;
a(13,18)=1;
b(13)=c;

%node(14)
a(14,14)=-4;
a(14,8)=1;
a(14,13)=1;
a(14,15)=1;
a(14,19)=1;
b(14)=c;

%node(15)
a(15,15)=-4;
a(15,10)=1;
a(15,14)=2;
a(15,20)=1;
b(15)=c;

%node(16)
a(16,16)=Tb;
b(16)=0;

%node(17)
a(17,17)=-4;
a(17,12)=1;
a(17,16)=1;
a(17,18)=1;
a(17,22)=1;
b(17)=c;

%node(18)
a(18,18)=-4;
a(18,13)=1;
a(18,17)=1;
a(18,19)=1;
a(18,23)=1;
b(18)=c;

%node(19)
a(19,19)=-4;
a(19,14)=1;
a(19,18)=1;
a(19,20)=1;
a(19,24)=1;
b(19)=c;

%node(20)
a(20,20)=-4;
a(20,15)=1;
a(20,19)=2;
a(20,25)=1;
b(20)=c;

%node(21)
a(21,21)=Tb;
b(21)=0;

%node(22)
a(22,22)=-4;
a(22,17)=1;
a(22,21)=1;
a(22,23)=1;
a(22,27)=1;
b(22)=c;

%node(23)
a(23,23)=-4;
a(23,18)=1;
a(23,22)=1;
a(23,24)=1;
a(23,28)=1;
b(23)=c;

%node(24)
a(24,24)=-4;
a(24,19)=1;
a(24,23)=1;
a(24,25)=1;
a(24,29)=1;
b(24)=c;

%node(25)
a(25,25)=-4;
a(25,20)=1;
a(25,24)=2;
a(25,30)=1;
b(25)=c;

%node(26)
a(26,26)=Tb;
b(26)=0;

%node(27)
a(27,27)=-4;
a(27,22)=1;
a(27,26)=1;
a(27,28)=1;
a(27,32)=1;
b(27)=c;

%node(28)
a(28,28)=-4;
a(28,23)=1;
a(28,27)=1;
a(28,29)=1;
a(28,33)=1;
b(28)=c;

%node(29)
a(29,29)=-4;
a(29,24)=1;
a(29,28)=1;
a(29,30)=1;
a(29,34)=1;
b(29)=c;

%node(30)
a(30,30)=-4;
a(30,25)=1;
a(30,29)=2;
a(30,35)=1;
b(30)=c;

%node(31)
a(31,31)=Tb;
b(31)=0;

%node(32)
a(32,32)=-4;
a(32,27)=1;
a(32,31)=1;
a(32,33)=1;
a(32,37)=1;
b(32)=c;

%node(33)
a(33,33)=-4;
a(33,28)=1;
a(33,32)=1;
a(33,34)=1;
a(33,38)=1;
b(33)=c;

%node(34)
a(34,34)=-4;
a(34,29)=1;
a(34,33)=1;
a(34,35)=1;
a(34,39)=1;
b(34)=c;

%node(35)
a(35,35)=-4;
a(35,30)=1;
a(35,34)=2;
a(35,40)=1;
b(35)=c;

%node(36)
a(36,36)=Tb;
b(36)=0;

%node(37)
a(37,37)=-4;
a(37,32)=2;
a(37,36)=1;
a(37,38)=1;
b(37)=c;

%node(38)
a(38,38)=-4;
a(38,33)=2;
a(38,37)=1;
a(38,39)=1;
b(38)=c;

%node(39)
a(39,39)=-4;
a(39,34)=2;
a(39,38)=1;
a(39,40)=1;
b(39)=c;

%node(40)
a(40,40)=-4;
a(40,35)=2;
a(40,39)=2;
b(40)=c;

T=a\b;

fprintf(' Forcing Function Vector \n ')
b(:,1)
fprintf(' NODE TEMPERATURE (K) \n ')
TSolution=T(:,1);

contourf(T)

for i=1:length(TSolution)
fprintf(' %4.0f \t \t %6.1f \n',i,TSolution(i))
end
 
Physics news on Phys.org
One of the problems that you may be having is:

%node(16)
a(16,16)=Tb;
b(16)=0;

I think that this should be:

%node(16)
a(16,16)=1;
b(16)=Tb;

so the equation that you would get in this case would be:

1 x T16 = Tb
so T16 = Tb/1 = Tb

In your case:

Tb x T16 = 0
so T16 = 0/Tb = 0
 
Question:Why u put C-D at node 1 until node 5?
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
813
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
732