- #1

- 3

- 0

## Main Question or Discussion Point

Hi everybody,

How do I solve this differential equation ??:

y'' = a(Exp(-b*y)-1) ;

where a, b are constants

with the boundaries conditions :

y'(x=0)=-K1

y'(x=L)=0

without the constant term I can do

y''*y' = y' a Exp(-b y)

then integrate it

[tex]\ {1/2} (y')^2= {a/b} ~Exp(-b y)[/tex]

and so on and finaly find something in hyperbolic function Tanh()....

but With the constant term " -a " on the right side, I don't know how to start.

Thank very much for your help

How do I solve this differential equation ??:

y'' = a(Exp(-b*y)-1) ;

where a, b are constants

with the boundaries conditions :

y'(x=0)=-K1

y'(x=L)=0

without the constant term I can do

y''*y' = y' a Exp(-b y)

then integrate it

[tex]\ {1/2} (y')^2= {a/b} ~Exp(-b y)[/tex]

and so on and finaly find something in hyperbolic function Tanh()....

but With the constant term " -a " on the right side, I don't know how to start.

Thank very much for your help