MHB (3+√a)^(1/3)+(3-√a)^(1/3) is an integer, find a

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integer
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Determine the positive numbers, $a$, such that the sum:

$$\sqrt[3]{3+\sqrt{a}}+\sqrt[3]{3-\sqrt{a}}$$

is an integer.
 
Mathematics news on Phys.org
lfdahl said:
Determine the positive numbers, $a$, such that the sum:

$$\sqrt[3]{3+\sqrt{a}}+\sqrt[3]{3-\sqrt{a}}$$

is an integer.
my solution:
let $\sqrt[3]{3+\sqrt{a}}=x$
$\sqrt[3]{3-\sqrt{a}}=y$
consider $x>0,y>0$
$x^3+y^3=(x+y)(x^2-xy+y^2)=6=2\times 3=3\times 2=6\times 1=1\times 6$
now $x+y=2---(1)$
and $x^2-xy+y^2=3$ $\rightarrow xy=\dfrac {1}{3}---(2)$
satisfy the condition $a>0$
$x,y$ are roots of $3t^2-6t+1=0$
$x=\dfrac{3+\sqrt 6}{3}$
$y=\dfrac{3-\sqrt 6}{3}$
and we get :$a\approx 8.963$
if $x+y<0$
$x^3+y^3=(x+y)(x^2-xy+y^2)=6=-2\times -3=-3\times -2=-6\times -1=-1\times -6$
with the same method we may get another "a" or no solution
 
Last edited:
Albert said:
my solution:
let $\sqrt[3]{3+\sqrt{a}}=x$
$\sqrt[3]{3-\sqrt{a}}=y$
consider $x>0,y>0$
$x^3+y^3=(x+y)(x^2-xy+y^2)=6=2\times 3=3\times 2=6\times 1=1\times 6$
only $x+y=2---(1)$
and $x^2-xy+y^2=3$ $\rightarrow xy=\dfrac {1}{3}---(2)$
satisfy the condition $a>0$
$x,y$ are roots of $3t^2-6t+1=0$
$x=\dfrac{3+\sqrt 6}{3}$
$y=\dfrac{3-\sqrt 6}{3}$
and we get :$a\approx 8.963$
if $x+y<0$
$x^3+y^3=(x+y)(x^2-xy+y^2)=6=-2\times -3=-3\times -2=-6\times -1=-1\times -6$
with the same method we may get another "a" or no solution

Would you please show the other $a$ solution?
 
lfdahl said:
Would you please show the other $a$ solution?
another solution:
sorry another solution will happen at :
$x+y=1$ and
$x^2-xy+y^2=6,or \,\, 3xy=-5$
which gives $x=1.8844,or\, -0.8844$
both yield $a=13.63$
here ($\sqrt[3]{3+\sqrt a}=x$)
($\sqrt[3]{3-\sqrt a}=y$)
 
Last edited:
Albert said:
another solution:
sorry another solution will happen at :
$x+y=1$ and
$x^2-xy+y^2=6,or \,\, 3xy=-5$
which gives $x=1.8844,or\, -0.8844$
both yield $a=13.63$
here ($\sqrt[3]{3+\sqrt a}=x$)
($\sqrt[3]{3-\sqrt a}=y$)

Well done, thankyou Albert!An alternative approach can be found here:

Let \[n = \sqrt[3]{3+\sqrt{x}}+\sqrt[3]{3-\sqrt{x}}, \: \: x >0.\]

Then

\[n^3 = 6+3n\left [ (3+\sqrt{x})(3-\sqrt{x})\right ]^{1/3}\]

Hence, \[\left ( \frac{n^3-6}{3n} \right )^3 = 9-x \Rightarrow x = 9 - \left ( \frac{n^3-6}{3n} \right )^3 > 0.\]

The term $\left ( \frac{n^3-6}{3n} \right )^3$ is monotone increasing and larger than $9$ for $n \ge 3$, so

it suffices to let $n$ be $1$ or $2$:$n = 1$: $x = \frac{368}{27} = 13,\overline{629}$.$n = 2$: $x = \frac{242}{27} = 8,\overline{962}$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top