How do I solve the equation e^(x+3) = pi^x?

  • Thread starter Thread starter jaypee
  • Start date Start date
AI Thread Summary
To solve the equation e^(x+3) = pi^x, take the natural logarithm of both sides, resulting in x + 3 = x * ln(pi). Rearranging gives 3 = x(ln(pi) - 1), allowing for isolation of x. The final solution for x is x = 3 / (ln(pi) - 1). Additionally, a user expressed difficulty with a different equation, e^x = 4 - x^2, but did not progress beyond taking the logarithm.
jaypee
I'm having a hard time solving this:
e^(x+3) = pi^x


I got these results, but I'm not sure if it is correct:
ln^(x+3) = ln(pi^x)
(x+3)ln = xln(pi)
xln + 3ln = xln(pi)
3ln = xln(pi)-xln
3ln = x(ln(pi) - ln)

x = 3ln/ln(pi)-ln

NOTE: PI =3.14 (I don't know how to insert the symbol pi)
 
Mathematics news on Phys.org
That's the right way to go about, but remember, ln is a function... you have to write ln(something), ln by itself is not a number.

ln(e)=1

and you should be able to get it from there...
 
Yeah, you're kinda butchering things with your "ln raised to a power" and "ln by itself" stuff.

Step 1. Take the natural logarithm of both sides of the equation:

ln(e^(x+3)) = ln(pi^x)

this becomes

x+3 = x * ln(pi)

Step 2. Isolate x on one side of the equation

3 = x * ln(pi) - x
3 = x (ln(pi) - 1)

Step 3. Solve for x

x = 3 / (ln(pi) - 1)

- Warren
 
I'm having difficulty in solving for x,in the equation e^x=4-x^2
help please
lne^x=ln(4-x^2)
x=ln(4-x^2) and this is as far as iI got
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top