7.3.5 Integral with trig substitution

Click For Summary
SUMMARY

The integral $$I=\displaystyle\int\frac{x^2}{\sqrt{9-x^2}}$$ can be evaluated using the formula from the common Integrals Table, specifically $$I=\int\frac{u^2}{\sqrt{u^2-a^2}} \, du$$ with $u=x$ and $a=3$. The result simplifies to $$I_{44}=\frac{x}{2}\sqrt{x^2-9}+\frac{9}{2}\ln\left|x+\sqrt{x^2-9}\right|+C$$. By applying trigonometric substitution with $x=3\sin{u}$, the integral transforms into $$9\int\sin^2{u} \, du$$, leading to the final result $$-\frac x 2\sqrt{9-x^2}+\frac 9 2 \arcsin\left( \frac x 3 \right )+C$$.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with trigonometric identities
  • Knowledge of substitution methods in integration
  • Experience with logarithmic functions and their properties
NEXT STEPS
  • Study trigonometric substitution techniques in integral calculus
  • Learn about the properties of logarithmic integrals
  • Explore the derivation of integrals from common Integrals Tables
  • Practice evaluating integrals involving square roots and trigonometric functions
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus, integral evaluation, and trigonometric functions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{Evaluate the integral}$
$$I=\displaystyle\int\frac{x^2}{\sqrt{9-x^2}}$$
$\textit{from the common Integrals Table we have}$
$$\displaystyle I=\int\frac{u^2}{\sqrt{u^2-a^2}} \, du
=\frac{u}{2}\sqrt{u^2-a^2}+\frac{a^2}{2}
\ln\left|u+\sqrt{u^2-a^2}\right|+C$$
$\textit{Thus if $u=x$ and $a=3$ we have}$
$$I_{44}=\int\frac{x^2}{\sqrt{x^2-3^2}} \, dx
=\frac{x}{2}\sqrt{x^2-3^2}+\frac{3^2}{2}
\ln\left|x+\sqrt{x^2-3^2}\right|+C$$
$\textit{or simplified}$
$$I_{44}=\int\frac{9}{\sqrt{x^2-9}} \, dx
=\frac{x}{2}\sqrt{x^2-9}+\frac{9}{2}
\ln\left|x+\sqrt{x^2-9}\right|+C$$

$\textit{so by using trig substitution to derive this we have}\\$
$\textit{$x=3\sin{u}\quad dx=3\cos{u} \, du $}$
\begin{align*}\displaystyle
&=\int\frac{9\sin^2{u}}{\sqrt{9-9\sin^2{u}}} \,
3\cos{u} du \\
&=9\int\frac{\sin^2{u}}{3\sqrt{1-\sin^2{u}}}
\, 3\cos{u} du
=9\int\sin^2{u} \, du\\
% &=9\int\frac{1 - cos^2{u}}{cos{u}} \, du
% = 9\left[\int\frac{1}{cos{u}}\, du - \int\frac{cos^2u}{cos u}\right]\\
\end{align*}ok how is this going to become what we see in the table equation ?
 
Physics news on Phys.org
karush said:
$\textsf{Evaluate the integral}$
$$I=\displaystyle\int\frac{x^2}{\sqrt{9-x^2}}$$
$\textit{from the common Integrals Table we have}$
$$\displaystyle I=\int\frac{u^2}{\sqrt{u^2-a^2}} \, du
=\frac{u}{2}\sqrt{u^2-a^2}+\frac{a^2}{2}
\ln\left|u+\sqrt{u^2-a^2}\right|+C$$
$\textit{Thus if $u=x$ and $a=3$ we have}$
$$I_{44}=\int\frac{x^2}{\sqrt{x^2-3^2}} \, dx
=\frac{x}{2}\sqrt{x^2-3^2}+\frac{3^2}{2}
\ln\left|x+\sqrt{x^2-3^2}\right|+C$$
$\textit{or simplified}$
$$I_{44}=\int\frac{9}{\sqrt{x^2-9}} \, dx
=\frac{x}{2}\sqrt{x^2-9}+\frac{9}{2}
\ln\left|x+\sqrt{x^2-9}\right|+C$$

$\textit{so by using trig substitution to derive this we have}\\$
$\textit{$x=3\sin{u}\quad dx=3\cos{u} \, du $}$
\begin{align*}\displaystyle
&=\int\frac{9\sin^2{u}}{\sqrt{9-9\sin^2{u}}} \,
3\cos{u} du \\
&=9\int\frac{\sin^2{u}}{3\sqrt{1-\sin^2{u}}}
\, 3\cos{u} du
=9\int\sin^2{u} \, du\\
% &=9\int\frac{1 - cos^2{u}}{cos{u}} \, du
% = 9\left[\int\frac{1}{cos{u}}\, du - \int\frac{cos^2u}{cos u}\right]\\
\end{align*}ok how is this going to become what we see in the table equation ?

I don't think it will, but it might become$$
-\frac x 2\sqrt{9-x^2}+\frac 9 2 \arcsin\left( \frac x 3 \right )+C$$which I believe is the correct answer.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K