MHB 7.3.5 Integral with trig substitution

Click For Summary
The integral I = ∫(x²/√(9-x²)) dx can be evaluated using a common integral formula, leading to a result involving logarithmic and square root terms. By applying trigonometric substitution with x = 3sin(u), the integral transforms into a simpler form that can be integrated. The discussion suggests that the final answer may not match the expected table result but proposes an alternative expression involving arcsine. The proposed solution is - (x/2)√(9-x²) + (9/2)arcsin(x/3) + C, which is believed to be correct. This highlights the importance of verifying results against established integral tables.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{Evaluate the integral}$
$$I=\displaystyle\int\frac{x^2}{\sqrt{9-x^2}}$$
$\textit{from the common Integrals Table we have}$
$$\displaystyle I=\int\frac{u^2}{\sqrt{u^2-a^2}} \, du
=\frac{u}{2}\sqrt{u^2-a^2}+\frac{a^2}{2}
\ln\left|u+\sqrt{u^2-a^2}\right|+C$$
$\textit{Thus if $u=x$ and $a=3$ we have}$
$$I_{44}=\int\frac{x^2}{\sqrt{x^2-3^2}} \, dx
=\frac{x}{2}\sqrt{x^2-3^2}+\frac{3^2}{2}
\ln\left|x+\sqrt{x^2-3^2}\right|+C$$
$\textit{or simplified}$
$$I_{44}=\int\frac{9}{\sqrt{x^2-9}} \, dx
=\frac{x}{2}\sqrt{x^2-9}+\frac{9}{2}
\ln\left|x+\sqrt{x^2-9}\right|+C$$

$\textit{so by using trig substitution to derive this we have}\\$
$\textit{$x=3\sin{u}\quad dx=3\cos{u} \, du $}$
\begin{align*}\displaystyle
&=\int\frac{9\sin^2{u}}{\sqrt{9-9\sin^2{u}}} \,
3\cos{u} du \\
&=9\int\frac{\sin^2{u}}{3\sqrt{1-\sin^2{u}}}
\, 3\cos{u} du
=9\int\sin^2{u} \, du\\
% &=9\int\frac{1 - cos^2{u}}{cos{u}} \, du
% = 9\left[\int\frac{1}{cos{u}}\, du - \int\frac{cos^2u}{cos u}\right]\\
\end{align*}ok how is this going to become what we see in the table equation ?
 
Physics news on Phys.org
karush said:
$\textsf{Evaluate the integral}$
$$I=\displaystyle\int\frac{x^2}{\sqrt{9-x^2}}$$
$\textit{from the common Integrals Table we have}$
$$\displaystyle I=\int\frac{u^2}{\sqrt{u^2-a^2}} \, du
=\frac{u}{2}\sqrt{u^2-a^2}+\frac{a^2}{2}
\ln\left|u+\sqrt{u^2-a^2}\right|+C$$
$\textit{Thus if $u=x$ and $a=3$ we have}$
$$I_{44}=\int\frac{x^2}{\sqrt{x^2-3^2}} \, dx
=\frac{x}{2}\sqrt{x^2-3^2}+\frac{3^2}{2}
\ln\left|x+\sqrt{x^2-3^2}\right|+C$$
$\textit{or simplified}$
$$I_{44}=\int\frac{9}{\sqrt{x^2-9}} \, dx
=\frac{x}{2}\sqrt{x^2-9}+\frac{9}{2}
\ln\left|x+\sqrt{x^2-9}\right|+C$$

$\textit{so by using trig substitution to derive this we have}\\$
$\textit{$x=3\sin{u}\quad dx=3\cos{u} \, du $}$
\begin{align*}\displaystyle
&=\int\frac{9\sin^2{u}}{\sqrt{9-9\sin^2{u}}} \,
3\cos{u} du \\
&=9\int\frac{\sin^2{u}}{3\sqrt{1-\sin^2{u}}}
\, 3\cos{u} du
=9\int\sin^2{u} \, du\\
% &=9\int\frac{1 - cos^2{u}}{cos{u}} \, du
% = 9\left[\int\frac{1}{cos{u}}\, du - \int\frac{cos^2u}{cos u}\right]\\
\end{align*}ok how is this going to become what we see in the table equation ?

I don't think it will, but it might become$$
-\frac x 2\sqrt{9-x^2}+\frac 9 2 \arcsin\left( \frac x 3 \right )+C$$which I believe is the correct answer.
 

Similar threads

Replies
8
Views
2K
Replies
6
Views
3K
Replies
6
Views
2K
Replies
1
Views
2K
Replies
3
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K