MHB -7.8.1 Amp, Period, PS, VS of 3cos(\pi x-2)+5

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Amp Period
AI Thread Summary
The discussion focuses on finding the amplitude, period, phase shift (PS), and vertical shift (VS) of the function y=3cos(πx-2)+5. The amplitude is determined to be 3, the vertical shift is 5, and the period is calculated as 2 using the formula T=2π/ω. The phase shift is found to be 2/π. Participants confirm the correctness of the equations and calculations throughout the discussion, ensuring clarity on the parameters involved.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find amplitude, period, PS, VS. graph 2 periods of
$y=3\cos(\pi x-2)+5$

ok I think these are the plug ins we use
$Y=A\cos\left[\omega\left(x-\dfrac{x \phi}{\omega} \right)\right]+B $
or
$A\cos\left(\omega x-\phi\right)+B$
A=amplitude B=VS or veritical shift
$T = \dfrac{2\pi}{\omega-\phi}$
$PS = 0$ assumed here

ok just want to see if I have these plug in eq right, different books use different symbols
 
Mathematics news on Phys.org
karush said:
Find amplitude, period, PS, VS. graph 2 periods of
$y=3\cos(\pi x-2)+5$

ok I think these are the plug ins we use
$Y=A\cos\left[\omega\left(x-\dfrac{x \phi}{\omega} \right)\right]+B $
or
$A\cos\left(\omega x-\phi\right)+B$
A=amplitude B=VS or veritical shift
$T = \dfrac{2\pi}{\omega-\phi}$
$PS = 0$ assumed here

ok just want to see if I have these plug in eq right, different books use different symbols
Use [math]Y = A\cos\left(\omega x-\phi\right)+B[/math] or [math]Y=A\cos\left[\omega\left(x-\dfrac{\phi}{\omega} \right)\right]+B[/math]. (You had one too many x's in your first equation.)

-Dan
 
$\displaystyle Y=A\cos\left[\omega\left(x-\dfrac{\phi}{\omega} \right)\right]+B$
then for $y=3\cos(\pi x-2)+5$
$A=3 \quad \omega=\pi \quad \phi=2 \quad B=5$
before the plug...:unsure:
where $T=\dfrac{2\pi}{\omega} $ and $PS=\dfrac{\phi}{\omega}$

 
karush said:
$\displaystyle Y=A\cos\left[\omega\left(x-\dfrac{\phi}{\omega} \right)\right]+B$
then for $y=3\cos(\pi x-2)+5$
$A=3 \quad \omega=\pi \quad \phi=2 \quad B=5$
before the plug...:unsure:
where $T=\dfrac{2\pi}{\omega} $ and $PS=\dfrac{\phi}{\omega}$
Yup. :)

-Dan
 

before the plug...:unsure:
where $T=\dfrac{2\pi}{\omega} $ and $PS=\dfrac{\phi}{\omega}$
so then
$T=\dfrac{2\pi}{\pi}=2$ and $PS=\dfrac{2}{\pi}$
kinda ? on PS
So T is Period?

 
karush said:

before the plug...:unsure:
where $T=\dfrac{2\pi}{\omega} $ and $PS=\dfrac{\phi}{\omega}$
so then
$T=\dfrac{2\pi}{\pi}=2$ and $PS=\dfrac{2}{\pi}$
kinda ? on PS
So T is Period?
Yes. You have it right.

-Dan
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
5
Views
1K
Replies
7
Views
1K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
4
Views
1K
Back
Top