Surface plasmons and hot electrons

prehisto
Messages
111
Reaction score
0
Hello,Im reading a article about water spliting device in which all necessary charge carriers for water spliting arise from surface plasmons.

This is the article:
http://www.nature.com/nnano/journal/v8/n4/full/nnano.2013.18.html#f1

So i do not understand how charge carriers arise form surface plasmons.
Could someone help me with this?
Meiby give me some kind a link where surface plasmons and hot electrons are explained.So far I haven't found any article which gives qualitative explanation of surface plasmons and charge carries.
 
Physics news on Phys.org
They write that the plasmons decay into electron-hole pairs.
This happens also for bulk plasmons, when their wavenumber is large enough.
See e.g. Fig. 5.5 in the following document:
http://www.lptl.jussieu.fr/files/chap_eg(1).pdf
 
Last edited by a moderator:
Thanks for the reference to decay.
Im sorry,but i can't make sense of fig.5.5
 
The gray shaded area is the region where particle hole excitations are possible.
Where the line ##\omega_p## lies inside this region, the plasmon can decay rapidly into particle hole pairs. Thats also what happens in the gold nanorods you are interested in.
Basically, the nanorod acts as a gigant antenna whose resonance frequency is determined by the surface plasmon resonance, but the oscillation of the charges is strongly damped as they decay into electron hole pairs. These separate and wander into the platinum grains or cobaltum oxide where they reduce/ oxidize water.
 
  • Like
Likes 1 person
DrDu said:
The gray shaded area is the region where particle hole excitations are possible.
Where the line ##\omega_p## lies inside this region, the plasmon can decay rapidly into particle hole pairs. Thats also what happens in the gold nanorods you are interested in.
Basically, the nanorod acts as a gigant antenna whose resonance frequency is determined by the surface plasmon resonance, but the oscillation of the charges is strongly damped as they decay into electron hole pairs. These separate and wander into the platinum grains or cobaltum oxide where they reduce/ oxidize water.

I m sorry but I have further questions about the graphic.
What is ω_(-) and what is ω_(+)? Are they just notation for graphical boundaries?
And K_F stands for wave number?
 
k_F is the Fermi wavenumber, i.e the maximal wavenumber electrons in have in a Fermi gas at zero temperature.
The two omegas are simply the limits above/below which electron-hole pairs exist.
 
  • Like
Likes 1 person
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top