MHB A great problem in Trigonometry

  • Thread starter Thread starter DrunkenOldFool
  • Start date Start date
  • Tags Tags
    Trigonometry
DrunkenOldFool
Messages
20
Reaction score
0
If $\sin x +\cos y=a$ and $\cos x+\sin y =b $, then what is $\tan\dfrac{x-y}{2}$ in terms of $a$ and $b$?
 
Mathematics news on Phys.org
DrunkenOldFool said:
If $\sin x +\cos y=a$ and $\cos x+\sin y =b $, then what is $\tan\dfrac{x-y}{2}$ in terms of $a$ and $b$?

Hello DrunkenOldFool! We have the following equations

\[ \sin x +\cos y=a \\ \cos x+\sin y =b\]

Adding these two equations, we will get

\[ (\sin x +\sin y)+(\cos x + \cos y)=a+b\]

Note that $\sin x +\sin y = 2\sin \dfrac{x+y}{2} \cos \dfrac{x-y}{2}$ and $\cos x +\cos y = 2\cos \dfrac{x+y}{2} \cos \dfrac{x-y}{2}$.

\[ \begin{align*} \implies \ 2\sin \dfrac{x+y}{2} \cos \dfrac{x-y}{2}+2\cos \dfrac{x+y}{2} \cos \dfrac{x-y}{2}&=a+b \\ \implies 2\sin \dfrac{x+y}{2}+2\cos \dfrac{x+y}{2} &= \frac{a+b}{\cos \dfrac{x-y}{2}} \end{align*}\]

Multiply both sides by $\sin\dfrac{x-y}{2}$.

\[\begin{align*}2\sin\dfrac{x-y}{2}\sin \dfrac{x+y}{2}+2\sin\dfrac{x-y}{2}\cos \dfrac{x+y}{2} &= (a+b)\tan \dfrac{x-y}{2}\end{align*}\]

Apply trigonometric product to sum identities on the left hand side of the equation:

\[\begin{align*}\cos y- \cos x+\sin x -\sin y &= (a+b)\tan \dfrac{x-y}{2} \\ \underbrace{(\sin x +\cos y)}_{a}-\underbrace{(\sin y +\cos x)}_{b} &= (a+b)\tan \dfrac{x-y}{2} \\ \tan \dfrac{x-y}{2} &= \frac{a-b}{a+b}\end{align*}\]
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
5
Views
2K
Replies
3
Views
1K
Replies
2
Views
1K
Replies
7
Views
1K
Replies
3
Views
1K
Replies
2
Views
2K
Replies
1
Views
1K
Back
Top