• Support PF! Buy your school textbooks, materials and every day products Here!

A problem in finding the General Solution of a Trigonometric Equation

  • #1
1,325
1,134

Homework Statement

:[/B]

Find the general solution of the Trigonometric equation $$\sin {3x}+\sin {x}=\cos {6x}+\cos {4x} $$

Answers given are: ##(2n+1)\frac {\pi}{2}##, ##(4n+1)\frac {\pi}{14}## and ##(4n-1)\frac {\pi}{6}##.

Homework Equations

:[/B]

Equations that may be used:

20170519_023122.png


The Attempt at a Solution

:[/B]

Please see the attached pic:

1495140875722-1985572902.jpg


The answer from Case 1 is correct, but I can't find my mistake in the answers from the two sub-cases of case 2.
 

Answers and Replies

  • #2
Charles Link
Homework Helper
Insights Author
Gold Member
4,490
1,904

Homework Statement

:[/B]

Find the general solution of the Trigonometric equation $$\sin {3x}+\sin {x}=\cos {6x}+\cos {4x} $$

Answers given are: ##(2n+1)\frac {\pi}{2}##, ##(4n+1)\frac {\pi}{14}## and ##(4n-1)\frac {\pi}{6}##.

Homework Equations

:[/B]

Equations that may be used:

View attachment 203761

The Attempt at a Solution

:[/B]

Please see the attached pic:

View attachment 203760

The answer from Case 1 is correct, but I can't find my mistake in the answers from the two sub-cases of case 2.
Your mistake is in the trigonometric identity ## cosA-cosB=-2sin((A+B)/2)sin((A-B)/2) ##. You didn't divide the terms (A+B and A-B) by 2 in both cases.
 
  • #3
1,325
1,134
Your mistake is in the trigonometric identity ## cosA-cosB=-2sin((A+B)/2)sin((A-B)/2) ##. You didn't divide the terms (A+B and A-B) by 2 in both cases.
Got it. Thanks a lot.
 
  • #4
Charles Link
Homework Helper
Insights Author
Gold Member
4,490
1,904
@Wrichik Basu This is an extra detail, but it may interest you that I think the solution ## x=(2n+1) \frac{\pi}{2} ## for all integers ## n ## is actually all included in the other two solutions. The reason is that ## x=(2n+1) \frac{\pi}{2} ## is also always a solution of ## cos(5x)=sin(2x) ##. (A complete expansion of ## cos(5x) ## and ## sin(2x) ##will generate a ## cos(x) ## factor on both sides of the equation.) ## \\ ## You can write ## x= (2k+1) \frac{\pi}{2}=(4n+1) \frac{\pi}{14} ## and if ## k ## is odd, for any ## k ## you can find an integer ## n ##. You can also write ## x=(2k+1) \frac{\pi}{2}=(4m-1) \frac{\pi}{6} ## and if ## k ## is even, for any ## k ## you can find an integer ## m ##. Thereby, the last two solutions completely overlap the ## x=(2n+1) \frac{\pi}{2} ## solution. ## \\ ## Editing... The other two solutions are completely independent of each other=a little algebra shows there is no "x" that is the same in both of them.
 
Last edited:

Related Threads for: A problem in finding the General Solution of a Trigonometric Equation

Replies
5
Views
1K
Replies
4
Views
3K
  • Last Post
Replies
20
Views
2K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
3
Views
1K
Top