A proof of Archimedes' Principle

Click For Summary
SUMMARY

The discussion provides a comprehensive proof of Archimedes' Principle, establishing that the buoyant force acting on a submerged object is equal to the weight of the fluid displaced. This is mathematically expressed as the buoyancy force equation: F_b = ρgV, where ρ is the fluid density, g is the acceleration due to gravity, and V is the submerged volume. The proof relies on Pascal's Principle and the application of Gauss's Law, demonstrating that the buoyant force is independent of the shape of the solid object. The historical context of the terminology used, such as referring to it as a principle rather than a law or theorem, is also discussed.

PREREQUISITES
  • Understanding of Pascal's Principle and its implications in fluid mechanics.
  • Familiarity with Gauss's Law and its application in physics.
  • Basic knowledge of fluid density and gravitational force concepts.
  • Proficiency in vector calculus for transforming integrals in fluid dynamics.
NEXT STEPS
  • Study the derivation of Pascal's Principle in detail.
  • Explore the applications of Gauss's Law in various physical scenarios.
  • Learn about the mathematical foundations of buoyancy and fluid dynamics.
  • Investigate the historical context of scientific terminology in physics.
USEFUL FOR

Students of physics, engineers working with fluid dynamics, and educators seeking to explain buoyancy concepts will benefit from this discussion.

DaTario
Messages
1,097
Reaction score
46
TL;DR
Hi All, is there a proof to Arquimedes Principle and the expression for the buoyancy force?
Hi All, is there a proof to Arquimedes Principle and the expression for the buoyancy force? In case there is a proof, may we refer to this as Arquimedes theorem? (Buoyancy force = density of the fluid x acceleration of gravity x submerged volume)

Best Regards,
DaTario
 
Physics news on Phys.org
DaTario said:
Hi All, is there a proof to Arquimedes Principle and the expression for the buoyancy force? In case there is a proof, may we refer to this as Arquimedes theorem? (Buoyancy force = density of the fluid x acceleration of gravity x submerged volume)
It follow more or less automatically from Pascal's principle that the pressure in a stationary fluid at equilibrium and under no net force is the same everywhere.

You layer onto this the idea that a uniform gravity field on a fluid of uniform density results in a fixed pressure at any given depth given by ##P=\rho g h##.

Then you realize that "buoyancy" is nothing more than the difference in the net force along the bottom of an object compared to the force along its top.

From there you realize that the net force difference on any given column within the object is equal to the volume of that column times ##\rho## times ##g##. Add up all the columns and you get that ##\sum F=\rho g V##.

If one is going to be careful about the proof, one needs that the object is completely surrounded by the fluid and that the fluid is all connected -- free to flow so as to equalize pressure.
 
It's fairly straightforward to transform the buoyant force integral ##-\int_{\partial V} p d\mathbf{S}## into a volume integral over ##V## by pure vector calculus.

A more intuitive explanation is that said buoyant force integral depends only on the shape of the boundary ##\partial V##. Therefore, for the purpose of determining the buoyant force, one can replace the body with fluid. The parcel of fluid is obviously in equilibrium along with the rest of the fluid, which implies that the buoyant force is nothing but minus the weight of the parcel of fluid.
 
  • Like
Likes   Reactions: hutchphd, vanhees71 and jbriggs444
Just to work that out: For a static fluid the total force density must be 0, i.e.,
$$-\vec{\nabla} P +\rho \vec{g}=0.$$
This implies that the buoyancy force of a body with volume ##V## and boundary surface ##\partial V## is
$$\vec{F}_{\text{buo}}=-\int_{\partial V} \mathrm{d}^2 \vec{f} P=\int_V \mathrm{d}^3 x (-\vec{\nabla} P)=-\vec{g} \int_V \mathrm{d}^3 x \rho=-\vec{g} m_V,$$
where ##m_V## is the mass of the displaced fluid, which is Archimedes's principle.
 
  • Like
Likes   Reactions: hutchphd and DaTario
vanhees71 said:
Just to work that out: For a static fluid the total force density must be 0, i.e.,
$$-\vec{\nabla} P +\rho \vec{g}=0.$$
This implies that the buoyancy force of a body with volume ##V## and boundary surface ##\partial V## is
$$\vec{F}_{\text{buo}}=-\int_{\partial V} \mathrm{d}^2 \vec{f} P=\int_V \mathrm{d}^3 x (-\vec{\nabla} P)=-\vec{g} \int_V \mathrm{d}^3 x \rho=-\vec{g} m_V,$$
where ##m_V## is the mass of the displaced fluid, which is Archimedes's principle.
So we use Gauss Law, basically. Is there any obstacle to including every possible solid shape in this proof? My guess is that this is the reason why Arquimedes Principle is not named as a law or a theorem (as in Stevin's).
 
  • Like
Likes   Reactions: vanhees71
Yes, it's Gauss's law, and the proof shows that it's completely general, i.e., independent of the shape of the solid. Of course it rests on Pascal's Law that the static stress tensor for a fluid is isotrophic, i.e., ##\sigma_{jk}=-P\delta_{jk}##. It's a good question, why it's named Archimendes's Principle and not Archimendes's Law or Theorem. I guess it's simply for historical reasons.
 
  • Like
Likes   Reactions: DaTario

Similar threads

  • · Replies 14 ·
Replies
14
Views
10K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
8K
  • · Replies 48 ·
2
Replies
48
Views
5K
  • · Replies 6 ·
Replies
6
Views
689
  • · Replies 35 ·
2
Replies
35
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 14 ·
Replies
14
Views
6K
  • · Replies 6 ·
Replies
6
Views
3K