MHB A question related to cardinality and probability

baiyang11
Messages
8
Reaction score
0
Dear all,

I have a question attached related to both probability and cardinality. Let me know if my formulation of the problem is non-rigorous or confusing. Any proof or suggestions are appreciated.Thank you all.
The question follows.Consider a set \(I\) consists of \(N\) incidents.
\[I=\{i_{1},i_{2},...,i_{k},...i_{N}\}\]
Each incident has a probability to happen, i.e. incident \(i_{k}\) happens with the probability \(r_{k}\). Without loss of generality, we assume \(r_{1}\geq r_{2}\geq ... \geq r_{k}\geq ... \geq r_{N}\)
Given a constant \(n<N\), we can have set \(I_{1}=\{i_{1},i_{2},...,i_{n}\}\). Apparently, \(|I_{1}|=n\) and \(I_{1}\subset I\).
Define a mapping \(I\to S\) with \(S=\{s_{1},s_{2},...,s_{k},...s_{N}\}\) subject to
\[
s_{k} = \left\{ \begin{array}{ccc}
1 &\mbox{ (Pr=$r_{k}$)} \\
0 &\mbox{ (Pr=$1-r_{k}$)} \\
\end{array} \right.
\]
Pick out the incidents with correspond \(s\) being 1 to form the set \(I_{2}\) , i.e.
\[I_{2}=\{i_{m_{1}},i_{m_{2}},...,i_{m_{M}}\} \quad \mbox{and} \quad s_{m_{k}}=1 \quad k=1,2,...,M \]
Apparently, \(|I_{2}|=M\) and \(I_{2}\subset I\). Note that there could be \(I_{2}\ne I_{1}\) and \(|I_{2}| \ne |I_{1}|\).

The question is,
If we have two set \(A\) and \(B\) with \(|A|=|B|=n\) and assume
\[ |A \cap I_{1}| \geq |B \cap I_{1}| \]
Is the following statement true?
\[ E(|A \cap I_{2}|) \geq E(|B \cap I_{2}|) \]
where \(E\) means expected value.
If this is true, how to prove it? If not, how to prove it’s not true?
 
Physics news on Phys.org
I already looked a couple of times at this question and it still confuses me.
First of all the statement itself. I think it has to be stated as
$$\mathbb{E}(A \cap I_2) \geq \mathbb{E}(B \cap I_2)?$$

Second, is there no information about $A$ en $B$ at all? Perhaps, something like $A \subset I$ and $B \subset I$?
 
Siron said:
I already looked a couple of times at this question and it still confuses me.
First of all the statement itself. I think it has to be stated as
$$\mathbb{E}(A \cap I_2) \geq \mathbb{E}(B \cap I_2)?$$

Second, is there no information about $A$ en $B$ at all? Perhaps, something like $A \subset I$ and $B \subset I$?

Thank you for reply!
(1) Yes. Here the 'E' character means expected value. I just didn't know how to make it like your character when I wrote this question. Now I know, but I can't edit it.
(2) Yes. $A \subset I$ and $B \subset I$.
Since I can't edit the original post, let me repost the question here.

Consider a set $I$ consists of $N$ incidents.
$I=\{i_{1},i_{2},...,i_{k},...i_{N}\}$
Each incident has a probability to happen, i.e. incident $i_{k}$ happens with the probability $r_{k}$. Without loss of generality, we assume $r_{1}\geq r_{2}\geq ... \geq r_{k}\geq ... \geq r_{N}$
Given a constant $n<N$, we can have set $I_{1}=\{i_{1},i_{2},...,i_{n}\}$. Apparently, $|I_{1}|=n$ and $I_{1}\subset I$.
Define a mapping $I\to S$ with $S=\{s_{1},s_{2},...,s_{k},...s_{N}\}$
subject to
$s_{k} = \left\{ \begin{array}{ccc}
1 &\mbox{ (Pr=$r_{k}$)} \\
0 &\mbox{ (Pr=$1-r_{k}$)} \\
\end{array} \right.$
Pick out the incidents with correspond $s$ being 1 to form the set $I_{2}$ , i.e.

$I_{2}=\{i_{m_{1}},i_{m_{2}},...,i_{m_{M}}\} \quad \mbox{and} \quad s_{m_{k}}=1 \quad k=1,2,...,M$

Apparently, $|I_{2}|=M$ and $I_{2}\subset I$. Note that there could be $I_{2}\ne I_{1}$ and $|I_{2}| \ne |I_{1}|$.

The question is,
If we have two set $A$ and $B$ satisfying the following three assumptions:

(1)$A\subset I$ and $B\subset I$

(2)$|A|=|B|=n$

(3)$|A \cap I_{1}| \geq |B \cap I_{1}|$

Is the following statement true?

$\mathbb{E}(A \cap I_2) \geq \mathbb{E}(B \cap I_2)$

where $\mathbb{E}$ means expected value.
If this is true, how to prove it? If not, how to prove it’s not true?
 
Last edited:
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top