quacam09
- 15
- 0
Hello,
Can you give some suggestions to solve the following system of 1st order nonlinear differential equations?
Thank you.
<br /> <br /> \[<br /> \begin{array}{l}<br /> u'(t) = Au^2 (t) + B(t)u + C(t) \\ <br /> u(t) = \left[ {\begin{array}{*{20}c}<br /> {x_1 (t)} \\<br /> {x_2 (t)} \\<br /> \end{array}} \right] \\ <br /> A = \left[ {\begin{array}{*{20}c}<br /> {a_{11} } & {a_{12} } \\<br /> {a_{21} } & {a_{22} } \\<br /> \end{array}} \right] \\ <br /> B(t) = \left[ {\begin{array}{*{20}c}<br /> {f_{11} (t)} & {f_{12} (t)} \\<br /> {f_{21} (t)} & {f_{22} (t)} \\<br /> \end{array}} \right] \\ <br /> C(t) = \left[ {\begin{array}{*{20}c}<br /> {g_{11} (t)} & {g_{12} (t)} \\<br /> {g_{21} (t)} & {g_{22} (t)} \\<br /> \end{array}} \right] \\ <br /> \end{array}<br /> \]<br /> <br />
Can you give some suggestions to solve the following system of 1st order nonlinear differential equations?
Thank you.
<br /> <br /> \[<br /> \begin{array}{l}<br /> u'(t) = Au^2 (t) + B(t)u + C(t) \\ <br /> u(t) = \left[ {\begin{array}{*{20}c}<br /> {x_1 (t)} \\<br /> {x_2 (t)} \\<br /> \end{array}} \right] \\ <br /> A = \left[ {\begin{array}{*{20}c}<br /> {a_{11} } & {a_{12} } \\<br /> {a_{21} } & {a_{22} } \\<br /> \end{array}} \right] \\ <br /> B(t) = \left[ {\begin{array}{*{20}c}<br /> {f_{11} (t)} & {f_{12} (t)} \\<br /> {f_{21} (t)} & {f_{22} (t)} \\<br /> \end{array}} \right] \\ <br /> C(t) = \left[ {\begin{array}{*{20}c}<br /> {g_{11} (t)} & {g_{12} (t)} \\<br /> {g_{21} (t)} & {g_{22} (t)} \\<br /> \end{array}} \right] \\ <br /> \end{array}<br /> \]<br /> <br />