- #1
cianfa72
- 1,246
- 155
- TL;DR Summary
- Definition of covariant derivative as a tensor through the limiting process of a fraction
Hi,
I've been watching lectures from XylyXylyX on YouTube. I believe they are really great !
One doubt about the introduction of Covariant Derivative. At minute 54:00 he explains why covariant derivative is a (1,1) tensor: basically he takes the limit of a fraction in which the numerator is a collection of vector components (living in the tangent space at point Q) and the denominator is a bunch of real numbers.
My point is: to be a (1,1) tensor it has to transform accordingly. The numerator is a vector and thus its components transform as such; what about the denominators ##\delta x^{\alpha}## ? I believe that the inverse of them have really to be the components of a co-vector
Is that the case ?
I've been watching lectures from XylyXylyX on YouTube. I believe they are really great !
One doubt about the introduction of Covariant Derivative. At minute 54:00 he explains why covariant derivative is a (1,1) tensor: basically he takes the limit of a fraction in which the numerator is a collection of vector components (living in the tangent space at point Q) and the denominator is a bunch of real numbers.
My point is: to be a (1,1) tensor it has to transform accordingly. The numerator is a vector and thus its components transform as such; what about the denominators ##\delta x^{\alpha}## ? I believe that the inverse of them have really to be the components of a co-vector
Is that the case ?
Last edited: