Acceleration due to centripetal acceleration

AI Thread Summary
Circular motion involves constant acceleration due to the continuous change in the direction of the object's velocity vector, which is directed toward the center of the circle. This centripetal force is balanced by an equal and opposite reaction force, often referred to as centrifugal force in a non-inertial frame. The distance from the center to the object remains constant because there is no radial component of velocity; the acceleration acts perpendicular to the velocity. If centripetal force were absent, the object would move in a straight line, increasing the distance from the center. Thus, centripetal acceleration maintains the circular path by continuously redirecting the object's motion without altering its speed.
AudioFlux
Messages
58
Reaction score
0
wikipedia said:
Circular motion is accelerated even if the angular rate of rotation is constant, because the object's velocity vector is constantly changing direction. Such change in direction of velocity involves acceleration of the moving object by a centripetal force, which pulls the moving object toward the center of the circular orbit.

if there was acceleration toward the centre, then why doesn't the distance from the centre to the object reduce? what provides the equal and opposite counter force to centripetal force?

(it's a pretty silly question, but i get confused)
 
Physics news on Phys.org
AudioFlux said:
if there was acceleration toward the centre, then why doesn't the distance from the centre to the object reduce?
Acceleration can involve changing speed or direction of something moving. In the centripetal acceleration case, only the direction of the velocity changes. There's never a component of velocity in the radial direction, so that distance never changes. (As long as something is moving in a circle.)
what provides the equal and opposite counter force to centripetal force?
Whatever body exerts the centripetal force on the centripetally accelerated object, that object will exert an equal and opposite force back on that body. Example: Twirl a ball on the end of a string. The string exerts a centripetal force on the ball, and so the ball exerts an equal and opposite force on the string.
 
Doc Al said:
There's never a component of velocity in the radial direction, so that distance never changes.

if there is no component of velocity in the radial direction, how does acceleration act toward the centre?
 
AudioFlux said:
if there is no component of velocity in the radial direction, how does acceleration act toward the centre?
Acceleration is the rate of change of velocity. The change in velocity is continually toward the center, but the velocity isn't.

Without any force, the object would move in a straight line, thus leaving the circular path. The centripetal force keeps pulling it back toward the center. Since that force is always sideways to the velocity, the direction changes but not the speed.
 
Doc Al said:
Acceleration is the rate of change of velocity. The change in velocity is continually toward the center, but the velocity isn't.

Without any force, the object would move in a straight line, thus leaving the circular path. The centripetal force keeps pulling it back toward the center. Since that force is always sideways to the velocity, the direction changes but not the speed.

so do you mean that the small distance (in blue) + the radius (in red) is what should have been the distance from the centre to the object if centripetal force was not acting, but, if centripetal force was acting, the small distance (blue) would be the apparent decrease in radius. even though the radius remains constant, it looks as if it is decreasing with respect to the initial point (provided the distance between the points is Rdθ, R is radius).
 

Attachments

  • Untitled.png
    Untitled.png
    1.1 KB · Views: 591
AudioFlux said:
so do you mean that the small distance (in blue) + the radius (in red) is what should have been the distance from the centre to the object if centripetal force was not acting, but, if centripetal force was acting, the small distance (blue) would be the apparent decrease in radius. even though the radius remains constant, it looks as if it is decreasing with respect to the initial point (provided the distance between the points is Rdθ, R is radius).
You can think of it that way. Even better is to think directly in terms of the change in velocity, as described here: Circular Motion and Acceleration
 
AudioFlux,
You might be making this too hard. Clearly one can accelerate an object from rest even though the object starts with no velocity in any direction.
 
olivermsun said:
Clearly one can accelerate an object from rest even though the object starts with no velocity in any direction.

true.
 
Isn't the centripetal force balanced by a reaction force- centrfugal force?
 
  • #10
physicsYum said:
Isn't the centripetal force balanced by a reaction force- centrfugal force?

i think,
gravitational force : normal force :: centripetal force : centrifugal force
 
  • #11
Doc Al said:
You can think of it that way. Even better is to think directly in terms of the change in velocity, as described here: Circular Motion and Acceleration

thanks that was very helpful :)
 
  • #12
AudioFlux said:
i think,
gravitational force : normal force :: centripetal force : centrifugal force

Can you please explain what you meant by that relation?

What I meant was, in circular motion, isn't the centripetal force canceled by centrifugal force, and hence there is no motion towards the center?
 
  • #13
physicsYum said:
Can you please explain what you meant by that relation?

What I meant was, in circular motion, isn't the centripetal force canceled by centrifugal force, and hence there is no motion towards the center?

when an object is stationary on then ground (which is perpendicular to the direction of g), the force which counteracts the gravitational force is normal force. Similarly, centripetal force acts in the opposite direction of centrifugal force, that is why the distance from the centre of a circular motion does not change.

wikipedia said:
In Newtonian mechanics, the term centrifugal force is used to refer to one of two distinct concepts: an inertial force (also called a "fictitious" force) observed in a non-inertial reference frame, and a reaction force corresponding to a centripetal force.
 
  • #14
I agree. Just wondering, then does it not answer the question: "if there was acceleration toward the centre, then why doesn't the distance from the centre to the object reduce?"
 
  • #15
physicsYum said:
I agree. Just wondering, then does it not answer the question: "if there was acceleration toward the centre, then why doesn't the distance from the centre to the object reduce?"

If there were no acceleration towards the centre, the distance between the object and the centre would be constantly increasing.

The centripetal acceleration of an object moving in a circle is precisely enough to stop the distance between the object and the centre point increasing.
 
  • #16
physicsYum said:
"if there was acceleration toward the centre, then why doesn't the distance from the centre to the object reduce?"
When the acceleration is always perpendicular to velocity, the path is a circle if the acceleration is constant as well as perpendicular to velocity. If the amount of acceleration varies with time, then just about any path would be possible, with the only constraint that speed is constant. The acceleration could be adjusted to create a spiral, an ellipse, a parabola, a hyperbola, a sine wave, ... , any path that is possible with constant speed and only direction changes.

For example, think of the possible paths your car could follow while moving at constant speed with just steering inputs. However if you hold the steering wheel in one position (constant acceleration), then the car's path will be a circle (or a straight line) (assuming it doesn't slide).
 
Back
Top